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In this paper, I propose a technique for recovering quantum dynamical information from imaginary-time data
via the resolution of a one-dimensional Hamburger moment problem. It is shown that the quantum autocorre-
lation functions are uniquely determined by and can be reconstructed from their sequence of derivatives at
origin. A general class of reconstruction algorithms is then identified, according to Theorem 3. The technique
is advocated as especially effective for a certain class of quantum problems in continuum space, for which only
a few moments are necessary. For such problems, it is argued that the derivatives at origin can be evaluated by
Monte Carlo simulations via estimators of finite variances in the limit of an infinite number of path variables.
Finally, a maximum entropy inversion algorithm for the Hamburger moment problem is utilized to compute the
quantum rate of reaction for a one-dimensional symmetric Eckart barrier.
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I. INTRODUCTION

While providing a formally simple solution for the quan-
tum dynamics of a physical system, the Feynman path inte-
gral method[1] generates one of the most difficult problems
in computational physics, when it comes to the actual simu-
lation on a “classical” computer: the dynamical sign problem
[2,3]. The highly oscillatory integrals appearing in the Feyn-
man path integral expression of the propagator cannot be
computed by direct Monte Carlo techniques, for there is no
suitable importance function that would transform the propa-
gator into an integral against a probability distribution[4].
Despite this inherent limitation, the Monte Carlo methods
have been applied to the finite-temperature dynamics,
through two different approaches, mainly. Both techniques
alleviate only partly the exponential loss of signal that is
indicative of the dynamical sign problem. The first approach
tries to construct an appropriate importance function by con-
voluting the highly oscillatory integrand with a local distri-
bution probability, whether a continuous[5–8] or a discrete
one [9]. While the research continues, actual applications of
such techniques to realistic physical systems are, at present,
rare.

The second approach, of which the present development
is part, attempts to reconstruct certain dynamical correlation
functions from the imaginary-time counterparts. While ana-
lytical continuation arguments show that this is possible in
principle [10,11], the resulting algorithms always involve the
resolution of certain ill-posed numerical problems, such as,
for instance, inverse real Laplace transforms or inverse mo-
ment problems. Such inverse problems are highly unstable
and suffer from an exponential amplification of the errors in
the input data. They require very accurate Monte Carlo data,
a careful choice of the type of data that are computed, as well
as appropriate choices of inversion and regularization algo-
rithms.

The most common strategy for performing the analytic
continuation is based on the inversion of a two-sided real
Laplace transform with noisy input data, to recover a spectral
function[12–15]. As already mentioned before, the inversion
problem is ill-posed and, as a consequence, the inversion
algorithms are highly unstable. The lack of continuity of the
inverse Laplace transform with the input data causes any
inversion algorithm to amplify the errors in the input data in
an exponential fashion. Because these errors are of statistical
nature, one is inclined to believe that it is virtually impos-
sible to recover any useful dynamical information. However,
most notably by use of methods of Bayesian statistical infer-
ence with entropic priors[15,16], various research groups
have been successful in obtaining limited but useful and
sometimes surprisingly reliable quantum dynamical informa-
tion, whether in the form of spectra[17–21], quantum rates
of reaction[22–24], or diffusion constants[25].

The Monte Carlo data computed for the methods based on
the inverse Laplace transform are usually the values on a grid
of some imaginary-time correlation function[15], values that
have proportional statistical errors and are highly redundant.
However, to a larger extent, the quality of the reconstructed
spectral density is controlled by the errors of the relative
differences, in addition to the errors of the absolute values of
these data. It is then apparent that ensuring low relative er-
rors for such differences is a definite way of improving the
quality of the final results, as well as the stability of the
inversion algorithms. Depending on the orderk of the finite-
difference scheme considered, the value of such a difference
decreases as a polynomial of orderk with the mesh of the
grid, and so must decrease its error. It is then apparent that
good quality of the input data requires good error bars, not
only for the imaginary-time correlation functions, but also
for their high-order derivatives. At the extreme, one may
consider that the input data consist of the value of the
imaginary-time correlation function at time zero only, to-
gether with the sequence of derivatives at origin. If such data
are computed, the reconstruction of the spectral density in-*Electronic address: cpredescu@comcast.net
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volves the resolution of an inverse moment problem, as we
shall discuss in the next section. The values of the deriva-
tives at origin of the imaginary-time correlation function be-
come the moments of the spectral density, except perhaps for
a normalization coefficient. The inverse moment problem is
expected to be more stable than the inverse Laplace trans-
form, with respect to the relative errors in the input data.

It is quite unfortunate that, for general quantum problems,
especially those in continuum space, the computation of de-
rivatives at origin of imaginary-time correlation functions is
extremely difficult. When available, the moment information
can act as a stabilizing factor for the techniques based on the
inverse Laplace transform. For instance, White[26,27] uti-
lized the first two moments of the spectral function for the
two-dimensional Hubbard model as additional constraints in
a maximum entropy approach, with remarkable success. For
fermionic systems, Caffarel and Ceperley[28] utilized the
first moment(average energy) of the spectral overlap func-
tion, a moment evaluated by quantum Monte Carlo, to stabi-
lize their maximum entropy computations. Another way to
make use of a limited number of low-order moments is to
incorporate the information into the default model. This tech-
nique was utilized by Diesz and co-workers to reconstruct
spectral weight functions for the one-dimensionalt-J [29]
and Heisenberg[30] models.

The limited use of moment information in the examples
mentioned in the preceding paragraph is due to the difficul-
ties encountered in the actual computation of the moments:
for example, only low-order moments can be computed in an
efficient way by means of sum rules. In principle, when mo-
ments can be computed effectively, full-fledged moment
techniques may be developed. However, as far as the present
author is aware, this is only the case for the computation of
moments for certain sparse Hamiltonian matrices, moments
that can be computed in O(N) operations by stochastic meth-
ods, as shown by Skilling[31], as well as by Silver and
Röder[32]. The availability of such information has led vari-
ous groups to the application of Bayesian inference methods
[33], kernel polynomial methods[32,34,35], or both[36] to
the development of linear scaling algorithms for the resolu-
tion of densities of states, in electronic structure calculations.

There are a couple of problems in continuum space that
would particularly benefit from a moment approach. For
these problems, the spectral function can be made rather fea-
tureless and the number of necessary moments can be made
rather small by the variation of certain physical parameters.
One interesting case is the aforementioned problem of com-
puting the Fermion ground state by quantum Monte Carlo
[28], where the complexity of the spectral overlap can be
greatly reduced by a proper choice of the antisymmetric trial
function(this spectral density becomes a singled function, in
the limit that the exact antisymmetric trial function is uti-
lized). In chemical physics, a very important problem is the
computation of the quantum rate of reaction by time-
integrating the flux-flux correlation function associated with
a surface that divides the reactants from the products
[22,37,38]. It is known that the quantum rate of reaction does
not depend upon the specific choice of dividing surface, al-
though the complexity of the flux-flux correlation function is
strongly dependent upon such a choice[38]. Thus, provided

that “the right” choice of surface is made, the spectral den-
sity of the flux autocorrelation function can be recovered
effectively from a few moments, at least in principle. The
only requirement is that these moments, or, equivalently, the
derivatives at origin of the imaginary-time flux-flux correla-
tion function, be computed with sufficient precision. A path-
integral technique that shall be presented in Sec. III is advo-
cated as an effective way to compute derivatives at origin of
correlation functions, for the type of problems discussed in
the present paragraph.

The first part of the paper provides a formal proof that the
sequence of moments uniquely determines the spectral den-
sity and, therefore, the autocorrelation function. In addition,
a convergence result is proved in order to identify a class of
reconstruction algorithms for the autocorrelation functions.
This result, which is the statement of Theorem 3, demon-
strates that all algorithms that preserve the positivity of the
underlying spectral function(such algorithms are said to be
positivity-preserving) [39], and which exactly match the first
n moments, lead to the correct autocorrelation function, in
the limit n→`. The algorithms based on the maximum en-
tropy principle [15,40,41] as well as those based on kernel
density functions[32,34,39] are examples of such algo-
rithms. Although the proofs are conducted for thermally
symmetrized autocorrelation functions, Theorem 3 applies
for all correlation functions, the power spectra of which are
positive distributions.

The larger part of the paper is concerned with the compu-
tation of derivatives at origin of correlation functions for
problems in continuum space. A general strategy for devel-
oping estimators having finite variance in the limit of an
infinite number of path variables is discussed and illustrated
for the case of the flux autocorrelation function. This strategy
follows the general guidance of Predescu and Doll of bury-
ing the time dependence of paths into the potential part of the
Feynman-Kac formula[42]. As implemented in the present
paper, the computation of the derivatives requires the utiliza-
tion of finite-difference schemes. Such an approach has been
successfully utilized in recent work for the numerical evalu-
ation of several thermodynamic energy and heat-capacity es-
timators[43]. It is imperative to mention thatno differentia-
tion of Monte Carlo data is ever attempted. Rather, the finite-
difference scheme replaces the analytical evaluation of the
derivatives of a deterministic function, an evaluation that
leads to expressions involving a large number of high-order
partial derivatives of the potential, if performed. The addi-
tional problem we must face in the present paper is that the
utilization of finite-difference schemes for derivatives be-
yond a certain order requires extended precision arithmetic,
which may be a serious programming nuisance. Alternative
techniques, such as, for instance, Lyness’ method[44], are
possible, but they require analytic continuation of the poten-
tial in d-dimensional complex spaces. Such alternatives will
be investigated in future work.

The present paper is limited to demonstrating that the ad-
vocated technique actually works. Any issues of efficiency
are postponed for future studies. In particular, these studies
will have to address the scaling of the variance of the esti-
mators utilized for the computation of the moments with the
order of the derivatives, the dimensionality of the system,
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and the inverse temperature. However, the numerical results
presented in Sec. IV(these results are quantum rates for a
symmetric Eckart barrier) show that the technique discussed
in the present paper is a useful tool for obtaining quantum
information of known computational difficulty.

II. THE RECONSTRUCTION OF AUTOCORRELATION
FUNCTIONS AS AN INVERSE MOMENT

PROBLEM

In physics, the quantum dynamical information measured
in experiments can generally be expressed in terms of quan-
tum correlation functions of the type

COstd =
trse−bHO†eiHt/"Oe−iHt/"d

trse−bHd
, t [ R, s1d

whenever the linear-response theory provides a good ap-
proximation of the measuring physical process[45]. The op-
erator H stands for the Hamiltonian of the system, a self-
adjoint and bounded from below operator, whereast[R and
b=1/skBTd.0 are the real time and the inverse temperature,
respectively.O† denotes the adjoint of the operatorO.

The normalization term trse−bHd in Eq. (1) is not relevant
for our discussion and we drop it from now on. Using trace
invariance in Eq.(1), we obtain

COstd = trfe−sb+it/"dHO†eiHt/"Og, t [ R. s2d

Equation(2) is mathematically well-defined on the strip of
the complex plane determined by the equation 0, Imstd
,b", provided that

trse−b1HO†e−b2HOd , ` s3d

for all b1, b2.0. In these conditions, Baym and Mermin
[10] have argued that the functionCOstd is analytic on the
aforementioned domain. In addition,COstd is uniquely deter-
mined on this domain by the values ofCOstd on the purely
imaginary interval(0, ib"), values that can be computed
efficiently by path-integral Monte Carlo techniques(via the
Feynman-Kac formula). Finally, the correlation function
COstd is uniquely determined at all points of continuity on
the frontier of the strip 0ø Imstdøb", a frontier that obvi-
ously includes the real axis.

Berne and Harp[46] have pointed out that the computa-
tion of thermally symmetrized quantum correlation functions

GOstd = trse−bcHO†e−bcHOd , s4d

with bc=b /2+it /" and bc=b /2−it /", might be an easier
computational task, yet the correlation functionsGOstd and
COstd carry essentially the same information, because their
Fourier transforms satisfy the simple relation

GOsvd = e−b"v/2COsvd.

Certain quantities of physical interest may not even require
the computation of direct and inverse Fourier transforms. For
the flux sFd autocorrelation functions, Miller, Schwartz, and
Tromp [22] have shown that the time integrals over the in-
terval [0, `] of the CFstd andGFstd functions are equal and

so, for the determination of the quantum rate of reaction
[22,37,38], it does not matter which of the correlation func-
tions is utilized. As Eq.(3) implies,GOstd is well-defined in
the strip of the complex plane defined by the equation
uImstdu,b" /2. Baym and Mermin’s argument can by ex-
tended to justify thatGOstd is analytic in this strip and admits
a unique analytic continuation from the values ofGOstd on
the purely imaginary interval(−ib" /2, ib" /2).

Before continuing with our exposition, let us remember
the statement of the Hamburger moment problem. Suppose a
sequence of real positive numbers{mkù0; kù1} is given.
The Hamburger moment problem consists in answering the
following questions.

(i) Is there a probability distributiondPsvd on the real
axis (−`, `) such that

mk =E
R

vkdPsvd, ∀ k ù 1?

(ii ) If the answer is positive, is the solution unique?(In
this case, the problem is called determinate.)

(iii ) If the solution is not unique, can one describe all
possible solutions having momentsmk?

As an historical note, the moment problem on the interval
[0, `) is called a Stieltjes problem, whereas the moment
problem on a compact interval[a, b] is called the Hausdorff
moment problem. The problems are named after the math-
ematicians that have successfully and completely resolved
the respective problems(the conditions are slightly different
for the three cases, with the Hamburger problem being the
most restrictive and challenging of the three). For our pur-
poses, it suffices to notice that a determinate Hamburger so-
lution, if it is a Stieltjes or Hausdorff solution, is also deter-
minate in the sense of Stieltjes or Hausdorff. Necessary and
sufficient conditions for a sequence of positive numbers to be
a moment sequence have been given by Hamburger in a
series of papers from 1920 to 1921[47]. He has also pro-
duced sufficient and necessary conditions for the problem to
be determinate. Because the inverse Hamburger moment
problem lacks continuity with the input data, any inversion
algorithm designed to recover a probability distribution from
moment data is ill-conditioned.

In this section, the computation of thermally symmetrized
quantum correlation functions is reduced to an inverse Ham-
burger moment problem. In this respect, it is first shown that
the sequence of derivatives at origin of the autocorrelation
function is a sequence of moments{mk; kù0}, up to a nor-
malization factor. In fact, the quantum autocorrelation func-
tion is the characteristic function of the probability distribu-
tion from which the momentsmk are derived, a probability
distribution that is commonly called the spectral weight
function. The ensuing Hamburger moment problem is then
shown to be determinate. Therefore, the autocorrelation
function is uniquely determined by its sequence of deriva-
tives at origin. While this statement also follows from the
Baym and Mermin argument, our proof has the advantage of
also suggesting reconstruction techniques. As such, Theorem
3, which identifies a large class of candidate algorithms for
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the inverse Hamburger moment problem, does not follow
from Baym and Mermin’s argument.

A. The input data

Let us show thatGOstd is well-defined on the strip
uImstdu,b" /2 in the complex plane, whenever

MOsb1,b2d = trse−b1HO†e−b2HOd , ` s5d

for all b1, b2.0. With the help of the spectral decomposi-
tion

e−bH =E
R

e−bEuElkEudE, s6d

Eq. (4) becomes

GOstd =E
R
E

R
e−bcE−bcE8zkEuOuE8lz2dEdE8, s7d

whereas the condition given by Eqs.(3) or (5) now reads

MOsb1,b2d =E
R
E

R
e−b1E−b2E8zkEuOuE8lz2dEdE8 , `,

s8d

for all b1, b2.0. From the inequality

uGOstdu ø E
R
E

R

ue−bcE−bcE8uzkEuOuE8lz2dEdE8

=E
R
E

R
e−bsE+E8d/2zkEuOuE8lz2dEdE8 = GOs0d,

s9d

one concludes that the integral appearing in Eq.(7) is abso-
lutely convergent for all tù0, because GOs0d
=MOsb /2 ,b /2d,`.

In these conditions, Baym and Mermin have argued that
GOstd is analytic on the stripuImstdu,b" /2. In fact, the ana-
lyticity of the autocorrelation function follows easily from
Eq. (5) and from the absolute convergence of the integral
appearing in Eq.(7). Nevertheless, for our algorithm, we
only need analyticity at origin together with a stronger state-
ment on the radius of convergence of the Taylor series about
origin. This is ensured by the following proposition.

Proposition 1. GOstd is differentiable at origin infinitely
many times and the radius of convergence of the Taylor se-
ries about origin is at leastb" /2.

Proof. Consider the standard inequality

Uez − o
k=0

n−1
zk

k!
U ø o

k=n

`
1

k!
uzuk = o

k=n

`
1

k!

uzuk

rk rk ø suzu/rdno
k=n

`
1

k!
rk

ø suzu/rdner ,

which is valid for all uzuø r ,`. Pick an arbitrary positive
numberr ,"b /2. Then, for allt with utu, r, we have

UeitsE−E8d/" − o
k=0

n−1
1

k!
S it

"
Dk

sE − E8dkU ø sutu/rdner uE−E8u/".

The last inequality implies

UGOstd − o
k=0

n−1
sitdk

k!
DkU ø S utu

r
Dn

Mr , s10d

where

Dk =
1

"kE
R
E

R
e−bsE+E8d/2sE − E8dkzkEuOuE8lz2dEdE8

s11d

and

Mr =E
R
E

R
e−bsE+E8d/2er uE−E8u/"zkEuOuE8lz2dEdE8

= 2E
R

dEE
E

`

dE8e−sb/2−r/"dE8−sb/2+r/"dEzkEuOuE8lz2

ø 2MOsb/2 − r/",b/2 + r/"d , `.

The finitude of the last term follows from Eq.(5) because
0, r ,b" /2.

SinceMr does not depend uponn, an easy inductive ar-
gument overn and Eq.(10) show that the termsDk are finite.
Moreover, lettingn→` in Eq. (10), we learn that

GOstd = o
k=0

`
1

k!
sitdkDk s12d

for all t with utu, r. Sincer ,b" /2 is arbitrary, the proof is
concluded.

From Eq. (7), we notice thatG0std=G0s−td. Therefore,
D2k+1=0 for all kù0. In these conditions, a little thought
shows that Eq.(12) can also be written as

GOsitd = o
k=0

`
1

s2kd!
t2kD2k, s13d

the right-hand side series being convergent at least on the
disk of equationutu,"b /2. Thus, the numbersD2k are posi-
tive [by Eq. (11)] and are the even derivatives of the
imaginary-time correlation functionGOsitd.

To summarize, the input data for the algorithm considered
in the present paper are the sequence of even derivatives of
the imaginary-time autocorrelation functionGOsitd. This se-
quence, denoted byD2k, consists of positive numbers com-
putable by path-integral Monte Carlo simulations.

B. The function that is reconstructed

The function (distribution) that is reconstructed is the
power spectrum of the autocorrelation functionGOstd. The
power spectrum is defined through the identity
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GOsvd =
1

2p
E

R
e−ivtGOstddt s14d

and is generally defined as a non-negative tempered distribu-
tion. With the help of Eq.(7), one computes

GOsvd =E
R
E

R
e−bsE+E8d/2F 1

2p
E

R
eitf−v+sE−E8d/"gdtG

3zkEuOuE8z2dEdE8 =E
R
E

R
e−bsE+E8d/2

3df− v + sE − E8d/"gzkEuOuE8lz2dEdE8.

Simple manipulations lead to

GOsvd = "e−bv"/2E
R

e−bEzkE + v"uOuElz2dE, s15d

which shows that the power spectrum is a non-negative dis-
tribution.

By means of Eq.(14), one easily proves that the symme-
try of GOstd implies the symmetry ofGOsvd. In addition,
with the help of the inverse Fourier transform

GOstd =E
R

eivtGOsvddv, s16d

one also proves that

D2k = s− 1dkd2kGO

dt2k s0d =E
R

GOsvdv2kdv.

We summarize the findings of the present subsection into
the following proposition.

Proposition 2. The prescription

dPOsvd =
1

D0
GOsvddv s17d

defines a symmetric probability measure onR. Thus, the odd
momentsm2k+1 of the measure are zero. The even moments
of the probability measuredPOsvd are finite and equal to

m2k ; E
R

v2kdPOsvd =
D2k

D0
, ∀ k ù 1. s18d

C. The moment problem to be solved

Surely, the reader has already anticipated that the problem
we want to solve is the following Hamburger moment prob-
lem: Determine the symmetric probability measure dPOsvd
on R, the even moments of which are given by the sequence
{D2k/D0, kù1}. However, in order for the problem to be
correctly formulated, we must show that there exists a
unique symmetric probability measure of even moments
{D2k/D0, kù1}.

The existence is automatically guaranteed by the prescrip-
tion fGOsvd /DOgdv, the normalized physical spectral den-
sity, which furnishes an example. For uniqueness, we cite the

following theorem (Theorem 3.11 from Sec. 2.3 of Ref.
[48]).

Theorem 1. If lim supk→`m2k
1/2k/2k,`, then there is at

most one distribution functionPOsvd with mk=evkdPOsvd
for all positive integersk.

We then have the following theorem.
Theorem 2. There exists a unique symmetric probability

measuredPOsvd of even momentshD2k/D0, kù1j, which is
the one associated with the physical spectral weight function.
Consequently, the sequence of positive numbers{D2k/D0,
kù1} uniquely determines the autocorrelation function
GOstd on the whole real axis.

Proof. Let t="b /4 anda=G0sitd. From Eq.(13) we learn
thatD2køas2kd! / t2k. With the help of Stirling’s formula, we
compute

lim sup
k→`

1

2k
SD2k

D0
D1/2k

ø
1

t
lim
k→`

S a

D0
D1/2kfs2kd!g1/2k

2k

=
1

t
lim
k→`

1

2k
F s2kd2kÎ4pk

e2k G1/2k

=
1

et
lim
k→`

s4pkd1/4k =
1

et
, ` s19d

and the theorem follows from Theorem 1 and the uniqueness
of the inverse Fourier transforms of probability distributions
(so-calledcharacteristic functionsof the respective probabil-
ity measures, according to Sec. 2.3.a of Ref.[48]). h

In particular, Theorem 2 shows that the dynamics on the
whole line is in principle uniquely determined by the se-
quence of derivatives at origin of the imaginary-time corre-
lation function. Of course, this also follows from Baym and
Mermin’s analytic continuation result, but the proof we have
performed is more direct in the sense that it connects the
uniqueness with the numerical technique in a straightforward
fashion. The reader will appreciate this from the following
theorem, which gives general criteria for the pointwise re-
covery of the correlation functionGOstd on the whole real
axis.

Theorem 3. Let dPO,nsvd be a sequence of symmetric
probability measures such that

lim
n→`

E
R

v2kdPO,nsvd = D2k/D0

for eachkù1. Then

lim
n→`

GO,nstd = GOstd, ∀ t [ R.

Observation. Of course, byGO,nstd we understand, up to a
multiplication factor ofD0, the characteristic function of the
measuredPO,nsvd. The characteristic function is defined by

GO,nstd = D0E
R

eivtdPO,nsvd.

Remembering Eqs.(16) and(17), we see thatGOstd is also a
characteristic function, namely that of the measuredPOsvd,
because
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GOstd = D0E
R

eivtdPOsvd.

Characteristic functions of measures are alwayscontinuous,
a fact that follows easily from the dominated convergence
theorem.

Proof of Theorem 3. Theorem 3.12 from Sec. 2.3 of Ref.
[48] asserts that the sequence of probability measures
dPO,nsvd converges weakly todPOsvd, because Eq.(19)
holds true. The first part of the continuity theorem(Theorem
3.4 from Sec. 2.3 of the same reference) states that the weak
convergence of the probability measures implies pointwise
convergence of the corresponding characteristic functions at
all times t[R. The last observation concludes the proof of
the theorem. h

In a sense, Theorem 3 says that the pointwise values of
the correlation functions are the easiest to obtain. Basically,
any procedure that is capable of reproducing the firstn mo-
ments of the true probability distribution leads to conver-
gence of the correlation functions, in the limit of largen.
Other properties, such as, for instance, certain integral values
involving correlation functions, are more difficult to obtain.
Given the general approach put forward in the present sec-
tion, we are now ready to discuss the two main computa-
tional aspects of the technique: the computation of the se-
quence of even derivatives of the imaginary-time correlation
function and the numerical resolution of the associated Ham-
burger moment problem.

III. DERIVATIVES OF THE IMAGINARY-TIME
CORRELATION FUNCTIONS

According to Proposition 1, the Taylor series about origin
of the imaginary-time correlation functionGOsitd is conver-
gent in the disk of equationutu,b" /2 of the complex plane.
As the well-known example of the free particle flux autocor-
relation function[see Eq.(59)] demonstrates, in general, one
cannot expect convergence beyond this radius. Thus, for the
purpose of computing derivatives in origin of the imaginary-
time correlation function, we are forced to restrict the range
of values oft on whichGOsitd is “sampled” to the real inter-
val (−b" /2, b" /2). On this interval, the correlation function
GOsitd is computable with the help of the Feynman-Kac for-
mula [1,42,49] and we now turn our attention to the problem
of constructing path-integral estimators for the evaluation of
the high-order derivatives ofGOsitd.

We shall illustrate the general strategy for the derivation
of estimators for the particular case of the flux autocorrela-
tion function. The reader should notice that, following the
prescription of Predescu and Doll[42], we strive to bury the
time dependence into the potential part of the various esti-
mators in order for these estimators to have finite variance in
the limit of an infinite number of path variables. This proce-
dure prevents the well-known divergence of the variances of
the estimators obtained by direct differentiation against
imaginary time, with the increase of the number of path vari-
ables. Such a divergence is characteristic of the Barker esti-
mators[50,51] and is caused by an unfortunate attempt to
differentiate the Brownian paths entering the Feynman-Kac

formula (a famous 1933 theorem of Paley, Wiener, and Zyg-
mund says that Brownian paths are not differentiable, with
probability 1) [52]. In addition, at the cost of utilizing a
one-dimensional finite-difference scheme, the approach
avoids the computation of the high-order derivatives of the
potential that appear in virial estimators[51] as well as in
estimators for which the imaginary-time differentiation is re-
placed by the direct action of the Hamiltonian. Even more,
available numerical results(although they are for low-order
derivatives only) suggest that the variances of thermody-
namic estimators we utilize are smaller than the variances for
the corresponding virial[43] and Hamiltonian techniques
[53], especially at low temperature.

For a one-dimensional system, the imaginary-time flux
autocorrelation function reads[22,38]

GFsitd = trse−sb/2+t/"dHF̂e−sb/2−t/"dHF̂d , s20d

where

F̂ =
1

2m0
fdsx̂ − xsdp̂ + p̂dsx̂ − xsdg s21d

and

p̂ =
"

i

]

] x

are self-adjoint operators(therefore, F̂†=F̂). The flux
operator F̂ corresponds to the dividing surface passing
through xs (actually, a “dividing point” in this one-
dimensional case). Settingbt=b /2+t /", Eq. (20) takes the
form

GFsitd = uS "

2m0
D2Frsx,x8;b−td

]2r

] x ] x8
sx,x8;btd

+
]2r

] x ] x8
sx,x8;b− tdrsx,x8;btd

−
] r

] x
sx,x8;b−td

] r

] x8
sx,x8;btd

−
] r

] x8
sx,x8;b−td

] r

] x
sx,x8;btdGUx8=x=xs

, s22d

where, of course,rsx,x8 ;btd is the density matrix at the in-
verse temperaturebt.

Let us consider the one-dimensional Feynman-Kac for-
mula [1,42,49]

rsx,x8;btd = r fpsx,x8;btdEe−bte0
1Vfxrsud+stBu

0gdu, s23d

which expresses the density matrix as the expected value of a
functional of the standard Brownian bridgeBu

0. In Eq. (23),
xrsud=x+sx8−xdu and st=s"2bt /m0d1/2, whereas
r fpsx,x8 ;btd stands for the density matrix of a similar free
particle at the inverse temperaturebt. By explicit computa-
tion, from Eq.(22) and the Feynman-Kac formula, one de-
rives the equation

CRISTIAN PREDESCU PHYSICAL REVIEW E70, 066705(2004)

066705-6



GFsitd = EE8e−b−te0
1Vsxs+s−tBu

0ddu−bte0
1Vsxs+stBu

08ddu 3 S "

2m0
D2

r fps0;b−tdr fps0;btdFt
0sB!

0,B!
08d , s24d

where

Ft
0sB!

0,B!
08d =

1

2s−t
2 +

1

2st
2 + bt

2FE
0

1

V8sxs + stBu
08duduGFE

0

1

V8sxs + stBu
08ds1 − udduG + b−t

2 FE
0

1

V8sxs + s−tBu
0duduG

3FE
0

1

V8sxs + s−tBu
0ds1 − udduG − b−tbtFE

0

1

V8sxs + s−tBu
0duduGFE

0

1

V8sxs + stBu
08ds1 − udduG

− b−tbtFE
0

1

V8sxs + stBu
08duduGFE

0

1

V8sxs + s−tBu
0ds1 − udduG − b−tE

0

1

V9sxs + s−tBu
0dus1 − uddu

− btE
0

1

V9sxs + stBu
08dus1 − uddu. s25d

In Eq. (24), the symbolsE andE8 denote the expected values
against the independent standard Brownian bridgesBu

0 and

Bu
08, respectively. In Eq.(25), V8sxd andV9sxd denote the first

and the second derivatives of the potentialVsxd, respectively.
Now, Eq. (24) can be rearranged as

GFsitd = EE8e−sb/2dfe0
1Vsxs+s0Bu

0ddu+e0
1Vsxs+s0Bu

08ddug

3
1

8pm0
Ft8sB!

0,B!
08d , s26d

where

Ft8sB!
0,B!

08d =
1

Îb−tbt

Ft
0sB!

0,B!
08de−sb/2dfD−tsB!

0d+DtsB!
08dg

s27d

and

DtsB!
0d =E

0

1

Vsxs + s0Bu
0ddu−

2bt

b
E

0

1

Vsxs + stBu
0ddu.

s28d

Anticipating the use of Monte Carlo techniques for the
evaluation of imaginary-time correlation functions and re-
lated properties, we introduce the normalization factor

NF =
1

8pm0
EE8e−sb/2dfe0

1Vsxs+s0Bu
0ddu+e0

1Vsxs+s0Bu
08ddug. s29d

In principle, the factorNF can be evaluated in a separate
Monte Carlo simulation, although for the one-dimensional
example presented later in the paper, we shall employ the
numerical matrix multiplication technique[54,55]. If rate
constants rather than absolute rates of reaction are desired,
one seeks to evaluate the ratio betweenNF and the partition
function of the reactant side,Qr. A Monte Carlo approach to
the computation of such ratios has been recently presented in
Ref. [56].

In any case, the main difficulty in the computation of
quantum correlation functions does not reside in the evalua-
tion of the normalization coefficientNF. Therefore, for the
remainder of the present paper, we shall focus our attention
on the Monte Carlo evaluation of the ratios

GFsitd
NF

= kFt8sB!
0,B!

08dl

=
EE8e−sb/2dfe0

1Vsxs+s0Bu
0ddu+e0

1Vsxs+s0Bu
08ddugFt8sB!

0,B!
08d

EE8e−sb/2dfe0
1Vsxs+s0Bu

0ddu+e0
1Vsxs+s0Bu

08ddug
,

s30d

or related quantities. For the purpose of computing averages
of the type given by Eq.(30), it turns out that it is useful to
replace the estimating functionFt8sB!

0 ,B!
08d with the symmet-

ric form

FtsB!
0,B!

08d =
1

2
fF−t8 sB!

0,B!
08d + Ft8sB!

0,B!
08dg . s31d

As follows from the equationGFs−itd=GFsitd, this replace-
ment does not change the value ofGFsitd. However, in the
next paragraph, we shall prove that the resulting estimator
has a smaller variance.

It follows from Eqs.(25) and (27) that

F−t8 sB!
0,B!

08d = Ft8sB!
08,B!

0d s32d

and therefore

FtsB!
0,B!

08d =
1

2
fFt8sB!

08,B!
0d + Ft8sB!

0,B!
08dg = FtsB!

08,B!
0d .

s33d

Consequently, the functionFtsB!
0 ,B!

08d is not only symmetric
with respect to time inversion, as follows directly from Eq.
(30), but also with respect to the exchange of variablesB!

0
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and B!
08. Let us writeFt8sB!

0 ,B!
08d as the sum between its

symmetric and its antisymmetric parts,

Ft8sB!
0,B!

08d = FtsB!
0,B!

08d +
1

2
fFt8sB!

0,B!
08d − Ft8sB!

08,B!
0dg .

Since antisymmetric functions integrate to zero against a
symmetric probability measure, and since the products of
symmetric and antisymmetric functions are antisymmetric,
we have

kFt8sB!
0,B!

08d2l = kFtsB!
0,B!

08d2l +
1

4
kfFt8sB!

0,B!
08d

− Ft8sB!
08,B!

0dg2l .

The last equation and the equality

kFt8sB!
0,B!

08dl = kFtsB!
0,B!

08dl =
GFsitd
Gds0d

,

which was discussed in the previous paragraph, clearly dem-
onstrate that the estimator given by Eq.(31) has a variance
smaller than that of the estimator given by Eq.(27).

To summarize, by Monte Carlo simulations, one may
compute averages of the type

GFsitd
NF

= kFtsB!
0,B!

08dl

=
EE8e−sb/2dfe0

1Vsxs+s0Bu
0ddu+e0

1Vsxs+s0Bu
08ddugFtsB!

0,B!
08d

EE8e−sb/2dfe0
1Vsxs+s0Bu

0ddu+e0
1Vsxs+s0Bu

08ddug ,

s34d

where

FtsB!
0,B!

08d =
1

2Îb−tbt

hF−t
0 sB!

0,B!
08de−sb/2dfDtsB!

0d+D−tsB!
08dg

+ Ft
0sB!

0,B!
08de−sb/2dfD−tsB!

0d+DtsB!
08dgj . s35d

The estimating functionFtsB!
0 ,B!

08d is symmetric under time

inversion—that is,FtsB!
0 ,B!

08d=F−tsB!
0 ,B!

08d—as well as un-

der the exchange of the variablesB!
0 andB!

08.
The construction of estimators for derivatives in origin is

straightforward and follows from Eq.(34). By Monte Carlo
simulations, one may compute the following averages:

U 1

NF

dk

dtk
GFsitdU

t=0

=

EE8e−sb/2dfe0
1Vsxs+sBu

0ddu+e0
1Vsxs+sBu

08ddug dk

dtk
FtusB!

0,B!
08dut=0

EE8e−sb/2dfe0
1Vsxs+sBu

0ddu+e0
1Vsxs+sBu

08ddug
. s36d

In this respect, the reader should notice that the function

FtsB!
0 ,B!

08d is well-defined for allt[ s−b" /2 ,b" /2d and is
infinitely differentiable on this interval provided that the po-
tential Vsxd is also differentiable infinitely many times. In
practical applications, the time derivatives appearing in Eq.
(36) are to be computed by finite difference. We shall further
discuss this matter in Sec. IV.

We now describe the construction of estimators for the
case of ad-dimensional system. For definiteness, we shall
assume that the physical coordinates have been rescaled such
that all masses are equal to the common valuem0. Perhaps
after a reorientation of the system of axes so that the first
coordinatex1 is along the reaction coordinate, the reactants
and products are assumed to be separated in the configura-
tion spaceRd by a hyperplane of equationx1=xs. For the
remainder of this section, when dealing with expressions in-
volving the density matrix, it turns out that it is more conve-
nient to work with the pair of position coordinates(x, z),
with z=x8−x, rather than with the standard(x, x8) pair. This
is so because identities of the type

E
R

dx8r fpsx,x8;btdr fpsx,x8;b−tdfsx8 − xd

=
1

2ps0
E

R
dze−z2

fszs±td, s37d

where s±t=sts−t /s0, are clearly simpler to express in the
new coordinate system. Moreover, transformations of the
type shown by Eq.(37) are consistent with the aforemen-
tioned advice of Predescu and Doll that the time dependence
of paths should be buried into the potential part of the
Feynman-Kac formula whenever possible.

With these clarifications, we leave it for the reader to
demonstrate that the multidimensional analogues of the vari-
ous quantities necessary for the construction of derivative
estimators are as follows. With the understanding that the
quantitiesV8sxd andV9sxd now denote the first-order and the
second-order partial derivatives against the reaction coordi-
natex1, the multidimensional analogue of Eq.(25) is
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Ft
0sx,z,B!

0,B!
08d =

1

2s−t,0
2 +

1

2st,0
2 + bt

2FE
0

1

V8sx + s±tzu + stBu
08duduGFE

0

1

V8sx + s±tzu + stBu
08ds1 − udduG

+ b−t
2 FE

0

1

V8sx + s±tzu + s−tBu
0duduGFE

0

1

V8sx + s±tzu + s−tBu
0ds1 − udduG

− b−tbtFE
0

1

V8sx + s±tzu + s−tBu
0duduGFE

0

1

V8sx + s±tzu + stBu
08ds1 − udduG

− b−tbtFE
0

1

V8sx + s±tzu + stBu
08duduGFE

0

1

V8sx + s±tzu + s−tBu
0ds1 − udduG

− b−tE
0

1

V9sx + s±tzu + s−tBu
0dus1 − uddu− btE

0

1

V9sx + s±tzu + stBu
08dus1 − uddu. s38d

The quantitiesBu
0 and Bu

08 are independentd-dimensional
standard Brownian bridges(d-dimensional vector valued sto-
chastic processes, the components of which are independent
one-dimensional standard Brownian bridges). We also define

Dtsx,z,B!
0d =E

0

1

Vsx + s0zu + s0Bu
0ddu

−
2bt

b
E

0

1

Vsx + s±tzu + stBu
0ddu s39d

as well as

Ftsx,z,B!
0,B!

08d =
1

2Îb−tbt

hF−t
0 sx,z,B!

0,B!
08d

3e−sb/2dfDtsx,z,B!
0d+D−tsx,z,B!

08dg

+ Ft
0sx,z,B!

0,B!
08d

3e−sb/2dfD−tsx,z,B!
0d+Dtsx,z,B!

08dgj . s40d

The normalization coefficientNF now reads

NF =
1

8pm0
S 1

2ps0
Dd−1E

S
dxdzEE8e−izi2

3e−sb/2dfe0
1Vsx+s0zu+s0Bu

0ddu+e0
1Vsx+s0zu+s0Bu

08ddug, s41d

where the integration against the variablesx andz is done on
the sd−2d-dimensional hyperplaneS, which is the subset of
the spaceRd3Rd defined by the equationsx1=xs andz1=0.
Therefore, the symboldx stands for the Lebesgue measure
dx2¯dxd, whereasdz stands fordz2¯dzd. The Euclidian
norm izi=sz1

2+¯+zd
2d1/2 can be replaced byizi=sz2

2+¯
+zd

2d1/2, since the coordinatez1 is kept constant and equal to
zero during integration.

In these conditions, up to the value of the normalization
coefficientNF, the derivatives in origin of the flux autocor-
relation functions can be determined by Monte Carlo integra-
tion, as implied by the equation

Dk

NF
=

1

NF
U dk

dtk
GFsitdU

t=0
=

E
S

dxdzEE8e−izi2e−sb/2dfe0
1Vsx+s0zu+s0Bu

0ddu+e0
1Vsx+s0zu+s0Bu

08ddug dk

dtk
Ftusx,z,B!

0,B!
08dut=0

E
S

dxdzEE8e−izi2e−sb/2dfe0
1Vsx+s0zu+s0Bu

0ddu+e0
1Vsx+s0zu+s0Bu

08ddug

. s42d

IV. SOLVING THE INVERSE MOMENT PROBLEM:
A NUMERICAL EXAMPLE

Until now, we have demonstrated that the sequence of
derivatives at origin completely and uniquely characterizes
the correlation function. Moreover, the sequence of deriva-
tives can be computed by Monte Carlo simulation via esti-
mators that have finite variance in the limit of an infinite
number of path variables(of course, for analytic potentials).

At this point, it is natural to address the problem of recover-
ing the correlation functions from the sequence of computed
moments.

More precisely, let us assume that we have computed the
set of even and non-negative derivativesD0,D2,… ,D2n and
that we have calculated the momentsm2k=D2k/D0 for 1øk
øn. At the very least, we would like to construct a sequence
of symmetric probability distributionsdPO,nsvd such that
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m2k =E
R

v2kdPO,nsvd s43d

for all 1økøn and nù1. Indeed, if Eq.(43) is satisfied,
then so is the hypothesis of Theorem 3, a theorem that fur-
ther guarantees that the correlation functions are fully recov-
ered (pointwise) in the limit n→`. However, many times,
the pointwise reconstruction of the correlation functions does
not suffice. For example, in the case of the flux autocorrela-
tion function, the chemical physicists are usually interested
in computing the absolute rate of reaction, which is the time
integral of the correlation function

ksTdQrsTd =E
0

`

GFstddt. s44d

Because the firstn even moments do not uniquely determine
a symmetric probability distribution, we have freedom in
choosing the reconstruction algorithm in such a way that not
only the pointwise values of the correlation functions, but
also various integral expressions are recovered in the limit
n→`.

Although the optimal reconstruction algorithm depends
upon the nature of the correlation functions and of the quan-
tum information being sought, we shall discuss and utilize in
the present paper a choice that is based on the maximum
entropy approach. The maximum entropy method
[15,40,57–59] suggests that a useful criterion is to choose the
probability distributionGsvd that maximizes the Shanon en-
tropy

SsGd = −E
R

GsvdlnfGsvd/msvdgdv, s45d

relative to the default modelmsvd and subject to the con-
straints

E
R

Gsvdv2kdv = D2k, 0 ø k ø n. s46d

In information theory, such a probability distribution is the
least biased one that is compatible with the partial informa-
tion represented by the known first moments. The default
modelmsvd is a strictly positive distribution. Although it has
a definite probabilistic meaning only if it is integrable, non-
integrable default models can also be used. The choice
msvd=1 is called the flat default model.

Simple variational arguments and use of Lagrange multi-
pliers show that the unique maximum of the above problem
is realized for

GO,nsvd = msvdexpS− o
j=0

n

l jv
2jD . s47d

The coefficientsl0,… ,ln are the Lagrange multipliers and
can be determined from the equations

D2k =E
R

msvdv2kexpS− o
j=0

n

l jv
2jDdv, 0 ø k ø n.

s48d

Notice that the form of the approximant given by Eq.(47)
ensures both the positivity and the symmetry of the power
spectrum, properties that have been demonstrated in Sec. II.
Then, the entropy ofGO,nsvd is given by

SfGO,ng = −E
R

GO,nsvdlnfGO,nsvd/msvdgdv = o
j=0

n

l jD2j .

s49d

One of the advantages of the maximum entropy algorithm
is that, by use of default models, it may incorporate addi-
tional physical information that depends upon the nature of
the quantum results being sought. However, for the present
example, a flat default model has been utilized. Also, for the
present application, the data have been assumed noiseless.
The stability of the final results with respect to the errors in
the input data has been found to be excellent, in part because
the number of matched moments is small, but also because
the different data are perfectly correlated(they are obtained
in the same Monte Carlo run). Thus, the assumption of noise-
less data is good. For larger numbers of included moments,
more general approaches of Bayesian statistical inference
with entropic priors also allow for the treatment of noise in
the data, via likelihood functions[15].

The system of equations(48) can be replaced by

l0 = ln F 1

D0
E

R
msvde−o j=1

n l jv
2j
dvG s50d

and

D2k = D0

E
R

msvdv2ke−o j=1
n l jv

2j
dv

E
R

msvde−o j=1
n l jv

2j
dv

, 1 ø k ø n. s51d

It is then a simple exercise to verify that Eqs.(51) are satis-
fied for all 1økøn provided that thel j’s represent the co-
ordinates of the minimum of the entropy functional

SfGO,ng = D0ln F 1

D0
E

R
msvde−o j=1

n l jv
2j
dvG + o

j=1

n

l jD2j ,

s52d

which is a convex function ofl1,… ,ln. Due to the convex-
ity of the function that is minimized, the minimum of Eq.
(52), if it exists, is unique. The necessary and sufficient con-
ditions for the existence of the minimum are known in the
literature[57,60]. In the present article, the minimization of
Eq. (52) has been carried out with the help of Newton’s
steepest descent technique. The Hessian matrix is evaluated
explicitly and utilized to predict the direction along which to
line-minimize. The Golden Section search is utilized to op-
timize along the computed direction. As discussed in Ref.
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[60], the computation of the coefficientsl j becomes less and
less stable as the number of matched moments increases and,
depending upon the number of even derivatives considered,
may require extended-precision arithmetics.

In order to demonstrate its usefulness, we apply the mo-
ment technique to the problem of computing the quantum
rate of reaction for a symmetric Eckart barrier at various
temperatures. The parameters for the Eckart barrier are cho-
sen to correspond approximately to the H+H2 reaction[61].
The potential is

Vsxd = V0 sechsaxd2, s53d

with the parametersV0=0.425 eV, a=1.36 a.u., andm0
=1060 a.u.

We evaluate the flux autocorrelation function and its first
five even derivatives at origin by Monte Carlo simulations,
as described in Sec. III. The derivatives of the estimator

FtsB!
0 ,B!

08d appearing in Eq.(36) are replaced by numerical
approximations computed via the central difference. Remem-

bering thatFtsB!
0 ,B!

08d is symmetric under the transformation
t°−t, the finite-difference formulas take on the general
form

d2k

dt2kFtsB!
0,B!

08d =
1

t2ko
j=0

5

ck,jF jtsB!
0,B!

08d + Ost12−2kd,

s54d

where the coefficientscj ,k are given in Table I. Numerical
experiments demonstrate that a time step of

t =
1

64

"b

2
s55d

is sufficient for a determination of the derivatives to an ac-
curacy of less than 2%.

Regarding the computation of derivatives by finite differ-
ence, the range of values oft that can be utilized depends on
the order of the derivatives as well as on the numerical pre-
cision with which the computations are conducted. For the
present paper, we employ the IEEE floating-point data type
double (64 bit) for the representation of real numbers. In-
creasing the order of the derivatives beyond 10 requires use
of extended-precision data types[62].

Many times, the chemical physicist takes the different ap-
proach of constructing models(and, therefore, empirical in-
version techniques) that have already incorporated additional
physical input[63]. In such cases, the finite number of de-
rivatives that can be computed using the data typedouble
may suffice for many practical purposes. This is why it is
appropriate to table the coefficientscj ,k, for the reader’s con-
venience. General rules for computing derivatives of arbi-
trary orders and accuracy have been discussed elsewhere
[64]. According to Eq. (54), the accuracy of the finite-
difference scheme is largest for the small-order derivatives
and decreases for the larger-order derivatives, if all the infor-

mation contained in the six points at whichFtsB!
0 ,B!

08d is
evaluated is to be taken into consideration. This is to our
advantage, because the low-order derivatives are computed
with increased precision despite the relatively large value of
the discretization stept demanded by the higher-order de-
rivatives.

For the sake of example, in Table II, we present the Monte
Carlo estimates of the first five even derivatives at origin for
the Eckart barrier at a temperature of 100 K. The derivatives
have been evaluated in 10 million Monte Carlo points with
the help of the estimators introduced in Sec. III. For the
discretization of the Feynman-Kac formula, we employ Pre-
descu’s fourth-order path-integral technique[65] with a num-
ber of 64-path variables. This technique is basically a Trotter
product

TABLE I. Numerical values for the coefficientsck,j appearing in the finite-difference approximations of
the derivatives of order 2k.

2k ck,0 ck,1 ck,2 ck,3 ck,4 ck,5

0 1 0 0 0 0 0

2 −5269/1800 10/3 −10/21 5/63 −5/504 1/1575

4 1529/120 −1669/90 4369/630 −541/420 1261/7560 −41/3780

6 −1023/20 323/4 239 87/8 −19/12 13/120

8 154 2252 136 246 26/3 −2/3

10 2252 420 2240 90 220 2

TABLE II. Derivatives (second row) and relative errors(third row) for the symmetric Eckart barrier at
100 K. The errors are twice the percentile relative value of the standard deviation. The errors do not include
the systematic errors due to the utilization of finite-difference approximations, which have been estimated to
increase the final errors with less than 2%. Numbers in brackets denote powers of 10.

Order 0 2 4 6 8 10

Value 5.787[E-17] 2.389[E-22] 4.010[E-27] 1.395[E-31] 7.985[E-36] 6.781[E-40]

Error 2.5% 2.4 % 2.4% 2.7% 3.9% 6.1%
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rnsx,x8;bd =E
R

dx1¯E
R

dxnr0Sx,x1;
b

n + 1
D

3 ¯r0Sxn,x8;
b

n + 1
D s56d

of a short-time approximation of the type

r0sx,x8;bd = r fpsx,x8;bdE
R

dmsa1d¯E
R

dmsaqd

3expH− bo
i=1

nq

wiVFxrsuid + so
k=1

q

akL̃ksuidGJ .

s57d

The quadrature pointsui and weightswi as well as the func-

tions L̃ksud are designed such that the convergence

rnsx,x8;bd → rsx,x8;bd

is as fast asOs1/n4d. These parameters are universal, in the
sense that they are independent of the choice of potential
Vsxd, and are given in Ref.[65], a reference that should be
consulted for further information.

At this low temperature of 100 K, the Monte Carlo sam-
pling requires the use of parallel tempering[66,67], which,
however, successfully copes with the sparse sampling prob-
lem caused by the crossing and recrossing of the barrier by
the Brownian paths. As a matter of fact, by Monte Carlo
integration, we compute the ratiosD2k/NF and the associated
statistical errors(two standard deviations). The quantityNF
is evaluated with the help of the numerical matrix multipli-
cation technique[54,55], which provides essentially exact
results. Thus, the relative errors reported in Table II are equal
to the relative errors of the ratiosD2k/NF and are, therefore,
representative of the variances of the estimating functions
utilized in the Monte Carlo simulation.

Once the power spectrumGF,nsvd is determined, the ab-
solute rate of reaction can be computed from Eq.(44), as the
quantity

ksTdQrsTd =E
0

`

GF,nstddt =
1

2
E

−`

`

GF,nstddt = pGF,ns0d.

s58d

Let us remember that

GF,nstd → GFstd, ∀ t [ R

for all reconstruction algorithms that satisfy the hypothesis
of Theorem 3. However, as already mentioned several times,
this does not automatically imply pointwise convergence in
the frequency domain. Sure enough, convergence in the fre-
quency domain is necessary only for the purpose of comput-
ing the absolute rate of reaction as the time integral of the
flux autocorrelation function, the power spectrum of which is
continuous at origin. It is not required for other autocorrela-
tion functions. Because it depends on the physical signifi-
cance of the corresponding autocorrelation functions and on
the nature of the quantum information that is sought, the
development of optimal reconstruction algorithms is a case-
by-case problem.

It is beyond the scope of this paper to conduct any math-
ematical proofs related to the pointwise convergence of the
power spectrum of the flux autocorrelation functions. How-
ever, the percentile relative errors for the absolute rates of
reaction presented in Table III strongly suggest that the maxi-
mum entropy algorithm discussed in previous paragraphs is
viable for the purpose of computing rates of reaction. The
errors eventually increase as the temperature is lowered, but
the reader may notice that the relative errors are sufficiently
small to make the algorithm useful even in the tunneling
regime of temperaturessT,300 Kd.

At large temperatures, the relative errors converge to the
relative errors for a free particle. The thermally symmetrized
flux autocorrelation function for the free particle is[22,38]

GFstd =
1

bh

sb"/2d2

ft2 + sb"/2d2g3/2. s59d

Its power spectrum reads

GFsvd =
1

bh

v"b

2p
K1Sv"b

2
D , s60d

whereK1sxd denotes the respective modified Bessel function
of the second kind. The functionxK1sxd is continuous at

TABLE III. Percentile relative errors for the absolute rates of reaction computed using all derivatives up
to the maximum orders of 2, 6, and 10 respectively. The errors are given as functions of temperature.
Whenever the minimization algorithm did not converge properly while using the maximal number of deriva-
tives, a smaller number of derivatives was utilized. The relative errors for the high-temperature limit are those
for the free-particle case(which are independent of temperature).

Order of Temperature

derivatives 100 K 200 K 300 K 500 K 1000 K 2000 K `

2 213.8 22.3 8.4 22.1 218.3 225.7 227.6

6 24.9 20.8 2.5 1.8 27.7 215.0 217.1

10 22.9 0.3 0.0 1.3 25.4 211.9 213.4
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origin, indeed, but its even derivatives in origin are not de-
fined. Therefore, the functionxK1sxd is not readily approxi-
mated around origin by smooth functions of the type given
by Eq. (47). Thus, for example, a useful direction for future
research is to modify the default model in the maximum
entropy algorithm in order to properly account for the known
high-temperature limit.

V. SUMMARY AND DISCUSSION

A new technique for extracting quantum dynamical infor-
mation from imaginary-time data has been proposed. The
technique consists in solving a symmetric Hamburger mo-
ment problem with even-order moments related to the even-
order derivatives at origin of the quantum autocorrelation
function. It has been demonstrated that the derivatives at
origin uniquely determine the autocorrelation function. The
derivatives can be computed by Monte Carlo simulations
with the help of estimators of finite variance. The pointwise
reconstruction of the autocorrelation functions can be per-
formed by those inversion algorithms that satisfy the hypoth-
esis of Theorem 3, although additional care is needed if other
quantities, such as, for instance, certain integral values, are
also sought. A moment-based maximum entropy inversion
algorithm has been numerically shown to cope successfully
with the problem of computing absolute rates of reaction for
a symmetric Eckart barrier.

Perhaps the most important step in the present develop-
ment is the realization that the derivatives at origin of the
imaginary-time autocorrelation functions are computable
solely by Monte Carlo simulations. As argued in the Intro-
duction, the sequence of derivatives at origin represents a set

of data that is more suitable for the problem of extracting
quantum dynamical information than the mere Monte Carlo
evaluation of the imaginary-time autocorrelation function on
a grid. However, future research is necessary in order to
quantify in a precise manner the efficiency of the new algo-
rithm. In particular, the scaling of the variances of the Monte
Carlo estimators with the degree of the derivatives, the di-
mensionality of the physical system, and the temperature
must be determined.

The numerical results presented in Sec. IV demonstrate
that the derivatives at origin of autocorrelation functions
contain useful information that can be utilized in at least two
ways. First, one may employ this information together with
various inversion algorithms for the Hamburger moment
problem. In this respect, I believe that methods of Bayesian
statistical inference and maximum entropy will be most use-
ful, especially because such techniques can incorporate addi-
tional physical information(as, for instance, a certain limit-
ing behavior) by appropriate choices of default models.
Second, if only a small number of derivatives are computed,
the chemical physicist also has the option of developing cer-
tain physical models depending on parameters that can be
determined from matching the known derivatives. Which of
these two ways will be the most successful for practical ap-
plications remains to be seen.
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