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In this paper, | propose a technique for recovering quantum dynamical information from imaginary-time data
via the resolution of a one-dimensional Hamburger moment problem. It is shown that the quantum autocorre-
lation functions are uniquely determined by and can be reconstructed from their sequence of derivatives at
origin. A general class of reconstruction algorithms is then identified, according to Theorem 3. The technique
is advocated as especially effective for a certain class of quantum problems in continuum space, for which only
a few moments are necessary. For such problems, it is argued that the derivatives at origin can be evaluated by
Monte Carlo simulations via estimators of finite variances in the limit of an infinite number of path variables.
Finally, a maximum entropy inversion algorithm for the Hamburger moment problem is utilized to compute the
quantum rate of reaction for a one-dimensional symmetric Eckart barrier.
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I. INTRODUCTION The most common strategy for performing the analytic
While providing a formally simple solution for the quan- continuation is based on the inversion of a two-sided real

tum dynamics of a physical system, the Feynman path inteLapIa_lce transform with noisy inpqt data, to recover a speptral
gral method[1] generates one of the most difficult problems fUnction[12-13. As already mentioned before, the inversion
in computational physics, when it comes to the actual simuProblem is ill-posed and, as a consequence, the inversion
lation on a “classical” computer: the dynamical sign problem@lgorithms are highly unstable. The lack of continuity of the
[2’3] The h|gh|y Osci”atory integra's appearing in the Feyn_|nverse Laplace transform W|th the Input data causes any
man path integral expression of the propagator cannot bé@version algorithm to amplify the errors in the input data in
computed by direct Monte Carlo techniques, for there is nd&n exponential fashion. Because these errors are of statistical
suitable importance function that would transform the propahature, one is inclined to believe that it is virtually impos-
gator into an integral against a probability distributipff.  sible to recover any useful dynamical information. However,
Despite this inherent limitation, the Monte Carlo methodsmost notably by use of methods of Bayesian statistical infer-
have been applied to the finite-temperature dynamicsgnce with entropic prior$l5,16, various research groups
through two different approaches, mainly. Both techniqueshave been successful in obtaining limited but useful and
alleviate only partly the exponential loss of signal that issometimes surprisingly reliable quantum dynamical informa-
indicative of the dynamical sign problem. The first approachton, whether in the form of spectfd7—21, quantum rates
tries to construct an appropriate importance function by conpg reaction[22—24, or diffusion constant§25].
voluting the highly oscillatory integrand with a local distri-  The Monte Carlo data computed for the methods based on
bution probability, whether a continuo(i5—8] or a discrete  the inverse Laplace transform are usually the values on a grid
one[9]. While the research continues, actual applications obf some imaginary-time correlation functi¢hs], values that
such techniques to realistic physical systems are, at preseiiaye proportional statistical errors and are highly redundant.
rare. However, to a larger extent, the quality of the reconstructed
The second approach, of which the present developmerfpectral density is controlled by the errors of the relative
is part, attempts to reconstruct certain dynamical correlatiojifferences, in addition to the errors of the absolute values of
functions from the imaginary-time counterparts. While ana-these data. It is then apparent that ensuring low relative er-
lytical continuation arguments show that this is possible ingrs for such differences is a definite way of improving the
principle[10,11], the resulting algorithms always involve the quality of the final results, as well as the stability of the
resolution of certain i||-posed numerical problemS, such asinversion a|g0rithms_ Depending on the Orﬁmf the finite_
for instance, inverse real Laplace transforms or inverse magifference scheme considered, the value of such a difference
ment problems. Such inverse problems are highly unstablgecreases as a polynomial of ordewith the mesh of the
and suffer from an eXponential amplification of the errors ingrid’ and so must decrease its error. It is then apparent that
the input data. They require very accurate Monte Carlo dataﬂood quality of the input data requires good error bars, not
a careful choice of the type of data that are computed, as wefinly for the imaginary-time correlation functions, but also
as appropriate choices of inversion and regularization algofor their high-order derivatives. At the extreme, one may
rithms. consider that the input data consist of the value of the
imaginary-time correlation function at time zero only, to-
gether with the sequence of derivatives at origin. If such data
*Electronic address: cpredescu@comcast.net are computed, the reconstruction of the spectral density in-
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volves the resolution of an inverse moment problem, as wehat “the right” choice of surface is made, the spectral den-
shall discuss in the next section. The values of the derivasity of the flux autocorrelation function can be recovered
tives at origin of the imaginary-time correlation function be- effectively from a few moments, at least in principle. The
come the moments of the spectral density, except perhaps fonly requirement is that these moments, or, equivalently, the
a normalization coefficient. The inverse moment problem igderivatives at origin of the imaginary-time flux-flux correla-
expected to be more stable than the inverse Laplace tranten function, be computed with sufficient precision. A path-
form, with respect to the relative errors in the input data. integral technique that shall be presented in Sec. Ill is advo-
It is quite unfortunate that, for general quantum problemscated as an effective way to compute derivatives at origin of
especially those in continuum space, the computation of dezorrelation functions, for the type of problems discussed in
rivatives at origin of imaginary-time correlation functions is the present paragraph.
extremely difficult. When available, the moment information  The first part of the paper provides a formal proof that the
can act as a stabilizing factor for the techniques based on theequence of moments uniquely determines the spectral den-
inverse Laplace transform. For instance, WH26,27 uti-  sity and, therefore, the autocorrelation function. In addition,
lized the first two moments of the spectral function for thea convergence result is proved in order to identify a class of
two-dimensional Hubbard model as additional constraints imeconstruction algorithms for the autocorrelation functions.
a maximum entropy approach, with remarkable success. Fdrhis result, which is the statement of Theorem 3, demon-
fermionic systems, Caffarel and Ceperlg8] utilized the  strates that all algorithms that preserve the positivity of the
first moment(average energyof the spectral overlap func- underlying spectral functiofsuch algorithms are said to be
tion, a moment evaluated by quantum Monte Carlo, to stabipositivity-preserving [39], and which exactly match the first
lize their maximum entropy computations. Another way ton moments, lead to the correct autocorrelation function, in
make use of a limited number of low-order moments is tothe limit n— . The algorithms based on the maximum en-
incorporate the information into the default model. This tech-tropy principle[15,40,4] as well as those based on kernel
nigue was utilized by Diesz and co-workers to reconstructensity functions[32,34,39 are examples of such algo-
spectral weight functions for the one-dimensiotal [29] rithms. Although the proofs are conducted for thermally
and Heisenber@30] models. symmetrized autocorrelation functions, Theorem 3 applies
The limited use of moment information in the examplesfor all correlation functions, the power spectra of which are
mentioned in the preceding paragraph is due to the difficulpositive distributions.
ties encountered in the actual computation of the moments: The larger part of the paper is concerned with the compu-
for example, only low-order moments can be computed in anation of derivatives at origin of correlation functions for
efficient way by means of sum rules. In principle, when mo-problems in continuum space. A general strategy for devel-
ments can be computed effectively, full-fledged momentoping estimators having finite variance in the limit of an
techniques may be developed. However, as far as the presanfinite number of path variables is discussed and illustrated
author is aware, this is only the case for the computation ofor the case of the flux autocorrelation function. This strategy
moments for certain sparse Hamiltonian matrices, moment®llows the general guidance of Predescu and Doll of bury-
that can be computed in(®) operations by stochastic meth- ing the time dependence of paths into the potential part of the
ods, as shown by Skilling31], as well as by Silver and Feynman-Kac formuld42]. As implemented in the present
Roder[32]. The availability of such information has led vari- paper, the computation of the derivatives requires the utiliza-
ous groups to the application of Bayesian inference methodton of finite-difference schemes. Such an approach has been
[33], kernel polynomial methodg32,34,35, or both[36] to  successfully utilized in recent work for the numerical evalu-
the development of linear scaling algorithms for the resolu-ation of several thermodynamic energy and heat-capacity es-
tion of densities of states, in electronic structure calculationstimators[43]. It is imperative to mention thato differentia-
There are a couple of problems in continuum space thaion of Monte Carlo data is ever attempted. Rather, the finite-
would particularly benefit from a moment approach. Fordifference scheme replaces the analytical evaluation of the
these problems, the spectral function can be made rather federivatives of a deterministic function, an evaluation that
tureless and the number of necessary moments can be mal@ads to expressions involving a large number of high-order
rather small by the variation of certain physical parameterspartial derivatives of the potential, if performed. The addi-
One interesting case is the aforementioned problem of contional problem we must face in the present paper is that the
puting the Fermion ground state by quantum Monte Carladtilization of finite-difference schemes for derivatives be-
[28], where the complexity of the spectral overlap can beyond a certain order requires extended precision arithmetic,
greatly reduced by a proper choice of the antisymmetric trialvhich may be a serious programming nuisance. Alternative
function(this spectral density becomes a singleinction, in ~ techniques, such as, for instance, Lyness’ metf#y, are
the limit that the exact antisymmetric trial function is uti- possible, but they require analytic continuation of the poten-
lized). In chemical physics, a very important problem is thetial in d-dimensional complex spaces. Such alternatives will
computation of the quantum rate of reaction by time-be investigated in future work.
integrating the flux-flux correlation function associated with  The present paper is limited to demonstrating that the ad-
a surface that divides the reactants from the productsocated technique actually works. Any issues of efficiency
[22,37,38. It is known that the quantum rate of reaction doesare postponed for future studies. In particular, these studies
not depend upon the specific choice of dividing surface, alwill have to address the scaling of the variance of the esti-
though the complexity of the flux-flux correlation function is mators utilized for the computation of the moments with the
strongly dependent upon such a choji88]. Thus, provided order of the derivatives, the dimensionality of the system,

066705-2



RECONSTRUCTION OF THERMALLY SYMMETRIZED... PHYSICAL REVIEW E 70, 066705(2004)

and the inverse temperature. However, the numerical resultso, for the determination of the quantum rate of reaction
presented in Sec. IVthese results are quantum rates for a[22,37,38, it does not matter which of the correlation func-
symmetric Eckart barrigrshow that the technique discussed tions is utilized. As Eq(3) implies, Go(t) is well-defined in
in the present paper is a useful tool for obtaining quantunthe strip of the complex plane defined by the equation
information of known computational difficulty. [Im(t)| < BA/2. Baym and Mermin’'s argument can by ex-
tended to justify thaGy(t) is analytic in this strip and admits
a unique analytic continuation from the values@f(t) on
the purely imaginary intervalt-iBh/2,iBh12).
Before continuing with our exposition, let us remember
the statement of the Hamburger moment problem. Suppose a
In physics, the quantum dynamical information measuredsequence of real positive numbeig,=0; k=1} is given.
in experiments can generally be expressed in terms of quard-he Hamburger moment problem consists in answering the

IIl. THE RECONSTRUCTION OF AUTOCORRELATION
FUNCTIONS AS AN INVERSE MOMENT
PROBLEM

tum correlation functions of the type following questions. o
tr(e‘BHOTeiH“ﬁOe‘iH“h) aXi(sl)( Is thir:ughptrr:)akiablllty distributionlP(w) on the real
Co(t) = , tER, 1 %
O( ) tr(e_lgH) ( )
whenever the linear-response theory provides a good ap-
proximation of the measuring physical proc§45]. The op- Mk:f odP(w), Ok=1?
eratorH stands for the Hamiltonian of the system, a self- R

adjoint and bounded from below operator, wherea®t and
B=1/(kgT) >0 are the real time and the inverse temperature
respectivelyO' denotes the adjoint of the operatOr

The normalization term te™#") in Eq. (1) is not relevant
for our discussion and we drop it from now on. Using trace
invariance in Eq(1), we obtain

(i) If the answer is positive, is the solution uniqu@f
this case, the problem is called determinate.
(iii) If the solution is not unique, can one describe all
possible solutions having momenig?
As an historical note, the moment problem on the interval
[0, ») is called a Stielties problem, whereas the moment
Co(t) = i e B VMHQTHAQ]  t € R. (2)  problem on a compact intervid, b] is called the Hausdorff
moment problem. The problems are named after the math-
Equation(2) is mathematically well-defined on the strip of ematicians that have successfully and completely resolved
the complex plane determined by the equatiorl(t)  the respective problemhe conditions are slightly different
< Bh, provided that for the three cases, with the Hamburger problem being the
_ _ most restrictive and challenging of the thyeBor our pur-
tr(e 10l 20) < o0 ©) poses, it suffices to notice that a determinate Hamburger so-
for all 8;, 8,>0. In these conditions, Baym and Mermin lution, if it is a Stieltjes or Hausdorff solution, is also deter-
[10] have argued that the functidBo(t) is analytic on the minate in the sense of Stieltjes or Hausdorff. Necessary and
aforementioned domain. In additioBq(t) is uniquely deter-  sufficient conditions for a sequence of positive numbers to be
mined on this domain by the values 6f(t) on the purely @ moment sequence have been given by Hamburger in a
imaginary interval(0, i5fi), values that can be computed Series of papers from 1920 to 19247]. He has also pro-
efficiently by path-integral Monte Carlo techniquesa the ~ duced sufficient and necessary conditions for the problem to
Feynman-Kac formula Finally, the correlation function D€ determinate. Because the inverse Hamburger moment
Co(t) is uniquely determined at all points of continuity on Problem lacks continuity with the input data, any inversion
the frontier of the strip & Im(t) < %, a frontier that obvi- algorithm de&gngd to recover a probability distribution from
ously includes the real axis. moment data_ls |II—cond|t|oned.. _
Berne and Harfj46] have pointed out that the computa- In this section, the computation of thermally symmetrized

tion of thermally symmetrized quantum correlation functionsduantum correlation functions is reduced to an inverse Ham-
burger moment problem. In this respect, it is first shown that

Go(t) =tr(e‘f3_cHOTe‘BcHO), (4) the sequence of derivatives at origin of the autocorrelation

o Y e )
with B,=pB/2+it/h and B,=B/2-it/#, might be an easier function is & sequence of momeriig,; k=0, up o & nor

ional task h lation f @ d malization factor. In fact, the quantum autocorrelation func-
computational task, yet the correlation functidBg(t) an tion is the characteristic function of the probability distribu-

Co(t)_ carry essentially. the same informat!on, because theifon from which the momentsy, are derived, a probability
Fourier transforms satisfy the simple relation distribution that is commonly called the spectral weight
ao(w) :e-ﬁﬁw/zao(w)_ function. The ensuing.Hamburger moment problem is thgn
shown to be determinate. Therefore, the autocorrelation
Certain quantities of physical interest may not even requirgunction is uniquely determined by its sequence of deriva-
the computation of direct and inverse Fourier transforms. Fotives at origin. While this statement also follows from the
the flux (F) autocorrelation functions, Miller, Schwartz, and Baym and Mermin argument, our proof has the advantage of
Tromp [22] have shown that the time integrals over the in-also suggesting reconstruction techniques. As such, Theorem
terval [0, «°] of the Cg(t) and Gg(t) functions are equal and 3, which identifies a large class of candidate algorithms for
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the inverse Hamburger moment problem, does not follow

from Baym and Mermin’s argument.

A. The input data

Let us show thatGp(t) is well-defined on the strip

[Im(t)| < BA/2 in the complex plane, whenever

Mo(B1, Bo) = tr(ePHOTe#2H0) < o (5

PHYSICAL REVIEW EO, 066705(2004)

< ([t|/r)nelEE N,

1fit\
eit(E—E’)/ﬁ_ _(_) E-E k
gok! fi ( )

The last inequality implies

n-1

for all By, B,>0. With the help of the spectral decomposi- Where

tion
ehPH= f e PE|E)(E|dE, (6)
R
Eg. (4) becomes
Gol(t) = f f e PEAE|(E|OJE" )2 EdE, (7)
R JR
whereas the condition given by Ed8) or (5) now reads

Mo(B1, B2) :f f e P1E-AE |(E|O|E")PdEdE < =,
R JR

(8)
for all B;, B>>0. From the inequality
Gott = | [ le=ne eoferasae
RJR
§ f J e AErE V2| OJE)PIEE = Go(0),
RJR
9

one concludes that the integral appearing in &g.is abso-
lutely convergent for all t=0, because Gy(0)

(i)« t\"
Go(t) = 2~ Di| < |r—| Mr, (10)
k=0 ™
1 ,
Dk=ﬁ—kf f e AEEV2(E — E")X(E|O|E")|’dEdE
RJR
11

and

Mr:f f e—ﬁ(E+E')/2€r\E—E’\/ﬁ|<E|O|E/>|2dEdEv
RJR

:2J dEf dE!e—(ﬁ/z—r/ﬁ)E’—(ﬁ/2+r/ﬁ)E|<E|O|E!>|2
R E

< 2Mo(BI2 =r/h,BI2 +1]h) < 0.

The finitude of the last term follows from E@5) because
0<r<phl2.

SinceM, does not depend upam an easy inductive ar-
gument oven and Eq.(10) show that the termB, are finite.
Moreover, lettingn—  in Eg. (10), we learn that

Sl
Go(t) = X —(it)"D, (12

S

for all t with |t| <r. Sincer < 8#/2 is arbitrary, the proof is
concluded.
From Eq.(7), we notice thatGy(t)=Gy(-t). Therefore,

D,+1=0 for all k=0. In these conditions, a little thought

=Mo(BI2,B12) <. §hows that Eq(12) can also be written as

In these conditions, Baym and Mermin have argued tha
Go(t) is analytic on the stripim(t)| < 8#/2. In fact, the ana-
lyticity of the autocorrelation function follows easily from
Eqg. (5) and from the absolute convergence of the integral
appearing in Eq(7). Nevertheless, for our algorithm, we . ) ) .
only need analyticity at origin together with a stronger statethe right-hand side series being convergent at least on the
ment on the radius of convergence of the Taylor series aboitisk of equatiorjt| <#/2. Thus, the numberSy, are posi-
origin. This is ensured by the following proposition. tive [by Eq. (11)] and are the even derivatives of the

Proposition 1 G(t) is differentiable at origin infinitely ~imaginary-time correlation functio®(it).
many times and the radius of Convergence Of the Tay|0r se- To Summal’ize, the input data for the algorithm considered
ries about origin is at leag#h /2. in the present paper are the sequence of even derivatives of

Proof. Consider the standard inequality the imaginary-time autocorrelation functi@y(it). This se-
quence, denoted by, consists of positive nhumbers com-
putable by path-integral Monte Carlo simulations.

Golit) = > (13
k=0

n-1 e 0 o0
v 1 1|7 1
-3 | =3 =S Sk (Y
okl e k!| | okl rk g o ki

B. The function that is reconstructed
< (|Z/in)"e, N . .
The function (distribution that is reconstructed is the
which is valid for all |z <r <. Pick an arbitrary positive power spectrum of the autocorrelation functiGg(t). The

numberr <7%8/2. Then, for allt with |t|<r, we have power spectrum is defined through the identity
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_ 1 it following theorem(Theorem 3.11 from Sec. 2.3 of Ref.
Golw) =5~ J e “Go(t)dt (14 [49)).

i Theorem 1 If lim sup,_..u52/2k<o, then there is at
and is generally defined as a non-negative tempered distrib@i0st one distribution functiofPo(w) with = J @*dPo(w)
tion. With the help of Eq(7), one computes for all positive integers.

We then have the following theorem.
G ()= o BEE")2 if gitl-o+(E-E" A Theorem 2 There exists a unique symmetric probability
© rJdr 27 )y measurel Po(w) of even moment$D,, /Dy, k= 1}, which is

the one associated with the physical spectral weight function.
X |(E|O|E’[PdEdE :f f @ BEEN2 Consequently, the sequence of positive numbddsg,/D,,
R Jn k=1} uniquely determines the autocorrelation function
Go(t) on the whole real axis.

X - w+ (E-E)/AIKE|OE")*dEME . Proof. Let t=8/4 anda=G(it). From Eq.(13) we learn
Simple manipulations lead to that Dy < a(2k)!/t?. With the help of Stirling’s formula, we
compute
Golw) = fig Potl2 f e PF(E+ wh|O[E)PdE,  (15) , 1Dy \Y 1 [ a \YE[(2k)! V=
R limsup—| —=—= < -lim|— B —
k—s o0 2k DO tk—»oc DO 2k
which shows that the power spectrum is a non-negative dis- —
tribution. P P ? L i{ (2k)2k\477k}1/2k
By means of Eq(14), one easily proves that the symme- t ko 2K e
try of Gp(t) implies the symmetry ofGo(w). In addition, 1 1
with the help of the inverse Fourier transform == lim (4mk)Y% = < (19
k—oe e
Go(t) = f e““tao(w)dw, (16) and the theorem follows from Theorem 1 and the uniqueness
R of the inverse Fourier transforms of probability distributions

one also proves that (so-calledcharacteristic function®f the respective probabil-

ity measures, according to Sec. 2.3.a of R48]). O
deKGo _ o In particular, Theorem 2 shows that the dynamics on the
Dac=(=1)"5z (0= | Golw)w™dw. whole line is in principle uniquely determined by the se-

f quence of derivatives at origin of the imaginary-time corre-

We summarize the findings of the present subsection intéation function. Of course, this also follows from Baym and

the following proposition. Mermin’s analytic continuation result, but the proof we have
Proposition 2 The prescription performed is more direct in the sense that it connects the
. uniqueness with the numerical technique in a straightforward

dPy(w) = —Go(w)dw (17) fashion. The.read.er will appreciate ;h|s from the. follpwmg

Dy theorem, which gives general criteria for the pointwise re-

) . . covery of the correlation functioBq(t) on the whole real
defines a symmetric probability measurelbnThus, the odd very oV

momentsu,,q Of the measure are zero. The even moments

of the probability measurdPy(w) are finite and equal to Theorem 3 Let dPo(w) be a sequence of symmetric

probability measures such that

D
_ 2k -~
Hax= fR widPolw) =75 Ok=1. (18 lim f w*dPg () = DDy
—<J R
for eachk=1. Then
C. The moment problem to be solved lim Go 4(t) = Go(t), OtER.

n—oe

Surely, the reader has already anticipated that the problem
we want to solve is the following Hamburger moment prob-  Observation Of course, byGo n(t) we understand, up to a
lem: Determine the symmetric probability measureqi#)  muiltiplication factor ofD,, the characteristic function of the
on R, the even moments of which are given by the sequena@easuredPy ,(w). The characteristic function is defined by
{Dy/Dg, k=1}. However, in order for the problem to be
correctly formulated, we must show that there exists a
unique symmetric probability measure of even moments
{Dy/Dyg, k=1}.

The existence is automatically guaranteed by the prescri)Remembering Eqg16) and(17), we see thaGq(t) is also a
tion [Gp(w)/Dpldw, the normalized physical spectral den- characteristic function, namely that of the meastiRy(w),
sity, which furnishes an example. For uniqueness, we cite thbecause

GO,n(t) = DOJ eiwtd PO,n(w)-
R
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ot formula(a famous 1933 theorem of Paley, Wiener, and Zyg-
Go(t) =Dy f €“'dPo(w). mund says that Brownian paths are not differentiable, with
i probability 1) [52]. In addition, at the cost of utilizing a

Characteristic functions of measures are alwegstinuous ~ one-dimensional finite-difference scheme, the approach
a fact that follows easily from the dominated convergenceavoids the computation of the high-order derivatives of the
theorem. potential that appear in virial estimatofs1] as well as in
Proof of Theorem 3Theorem 3.12 from Sec. 2.3 of Ref. estimators for which the imaginary-time differentiation is re-
[48] asserts that the sequence of probability measure@'aQEd by the d|.rect action of the Hamiltonian. Even more,
dPg (w) converges weakly talPg(w), because Eq(19)  available numerical resuli@lthough they are for low-order
holds true. The first part of the continuity theor¢fheorem  derivatives only suggest that the variances of thermody:-
3.4 from Sec. 2.3 of the same referensttes that the weak Namic estimators we utilize are smaller than the variances for
convergence of the probability measures implies pointwiséhe corresponding viria[43] and Hamiltonian techniques
convergence of the corresponding characteristic functions ab3l. especially at low temperature. .
all timestE R. The last observation concludes the proof of ~For a one-dimensional system, the imaginary-time flux

the theorem. 0 autocorrelation function read22,38
In a sense, Theorem 3 says that the pointwise values of _ B (DA
the correlation functions are the easiest to obtain. Basically, Gr(it) =tr(e (B2t HEgm(BI2-0h) F), (20)

any procedure that is capable of reproducing the firsto-
ments of the true probability distribution leads to conver-
gence of the correlation functions, in the limit of large .1
Other properties, such as, for instance, certain integral values F=——[8X=X)p+pPoX—xJ)] (22)
involving correlation functions, are more difficult to obtain. 2my

Given the general approach put forward in the present SeGing

tion, we are now ready to discuss the two main computa-

tional aspects of the technique: the computation of the se- hoo

quence of even derivatives of the imaginary-time correlation p=--—_

function and the numerical resolution of the associated Ham-

burger moment problem.

where

are self-adjoint operatorgtherefore, F'=F). The flux

operator F corresponds to the dividing surface passing

IIl. DERIVATIVES OF THE IMAGINARY-TIME through xs (actually, a “dividing point” in this one-
CORRELATION FUNCTIONS dimensional cage Setting 8,=8/2+t/#, Eq. (20) takes the

According to Proposition 1, the Taylor series about originfom

of the imaginary-time correlation functioBq(it) is conver- 5 \2 P
gent in the disk of equatioft| < g7/2 of the complex plane. Ge(it) = <_> [p(x,x’;,B_t) P (%X BY)
As the well-known example of the free particle flux autocor- 2my IXIX
relation function[see Eq(59)] demonstrates, in general, one 2p
cannot expect convergence beyond this radius. Thus, for the + Ix X (x,X"; B=)p(X,X"; By)
purpose of computing derivatives in origin of the imaginary-
time correlation function, we are forced to restrict the range ap, ap .,
of values oft on whichGg(it) is “sampled” to the real inter- = o X B (XX By
val (=phl2, Bhl2). On this interval, the correlation function
Go(it) is computable with the help of the Feynman-Kac for- _9P 9P .
. ,(X,X !IB—I) (X,X lB’[) X/ =X=X 0 (22)
mula[1,42,49 and we now turn our attention to the problem d dX s

of constructing path-integral estimators for the evaluation of

the high-order derivatives dby(it). where, of coursep(x,x’; B, is the density matrix at the in-
We shall illustrate the general strategy for the derivationverse temperaturg,.

of estimators for the particular case of the flux autocorrela- Let us consider the one-dimensional Feynman-Kac for-

tion function. The reader should notice that, following themula[1,42,49

prescription of Predescu and D2], we strive to bury the L 5

time dependence into the potential part of the various esti- p(X,X"; B) = prp(X,X'; Bt)Ee‘BthV[Xr(”)“’tBu]d“, (23

mators in order for these estimators to have finite variance in

the limit of an infinite number of path variables. This proce-Which expresses the density matrix as the expected value of a

dure prevents the well-known divergence of the variances ofunctional of the standard Brownian brid@. In Eq. (23),

the estimators obtained by direct differentiation againstt(W)=x+(xX'=x)u  and  o=(h*B/my"%,  whereas

imaginary time, with the increase of the number of path vari-psp(X, X’ ; 8;) stands for the density matrix of a similar free

ables. Such a divergence is characteristic of the Barker estparticle at the inverse temperatyge By explicit computa-

mators[50,5] and is caused by an unfortunate attempt totion, from Eq.(22) and the Feynman-Kac formula, one de-

differentiate the Brownian paths entering the Feynman-Kacives the equation
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) o \2 ,
Ge(it) = Y e - Vst Bdu-Bu Vg o 5 (%) Pp(0;B-0)pip(0; ,Bt)]:?(BE, B® ) (24)

) 1 1 1 , 1 , 1
f?(BS,BS)=2—2+p+ﬁ$l f V’(xs+ot88)uduH f V’(xs+ot88)(1—u>du}+ﬁi{ f V’<xs+o_t88>udu}
O'_t O't

0 0 0

1 1 1
X lJ V' (xs+ o_BY(1 - u)du} - B_tﬁt[J V' (xs+ a_tBS)udu} lf V' (x+ 8% (1 - u)du]
0

0 0

1 1 1
—ﬂ_tﬁtl f V’(xs+at88’)uduH J V'<xs+o_t88><1—u>du]—ﬁ_t f V(% + oBYU(L —u)du
0 0

0

1
- ,BJ V(% + 0,B% )u(1 - uydu. (25
0

In EqQ.(24), the symbold: andl’ denote the expected values In any case, the main difficulty in the computation of
against the independent standard Brownian brio@and guantum correlation functions does not reside in the evalua-
BS/, respective'y_ In Eq(25), V’(X) andv”(x) denote the first tion of the normalization Coeﬁicien/k/,:. Therefore, for the

and the second derivatives of the poter¥at), respectively. remainder of the present paper, we shaI_I focus our attention
Now, Eq.(24) can be rearranged as on the Monte Carlo evaluation of the ratios

Ge(it) = EE' e F2LI0Vxs+o0BY)dur[gV(xs+o0B ol G/F\/—('t) =(78%8%))
F
1 r( 0 0’) 1 0,y . L o' /
X m]—} B..B; ), (26) _ B’ e (F2LoVxstooBdusfoVixsrooly )dul 7 (30 B0’
where [l @ (BIDLIV(xstagBdu+[§V(xsrogB) )du]
, v (30
/(RO RO = 0 RO )a-(BI2[A_(BY)+A(BY )]
T (B*’B* ) \,,ﬂ_tlgtf?(B*’B* )e l t or related quantities. For the purpose of computing averages
27) of the type given by Eq(30), it turns out that it is useful to
replace the estimating functiof| (B2,B?') with the symmet-
and ric form
0 ' 0 2131 ! 0 0 R0’ 1 4 0 RO’ 1 'R0 RO’
ABY = | Viw+onBidu=-= | Vi + oBdu FELB)) =B + FEBLED)]. (3D
0 0

(28)  As follows from the equatiorGg(—it) =Gg(it), this replace-

Anticipating the use of Monte Carlo techniques for the MeNt does not change the value ®(it). However, in the
evaluation of imaginary-time correlation functions and re-Next paragraph, we shall prove that the resulting estimator

lated properties, we introduce the normalization factor has a smaller variance.
It follows from Egs.(25) and(27) that
1 1 0 1 o'

Ne= G & TR . (29 8280 = 7(82 B9) (32
In principle, the factorA: can be evaluated in a separate and therefore
Monte Carlo simulation, although for the one-dimensional
example presented later in the paper, we shall employ the }}(BS,BE,) =1
numerical matrix multiplication techniqugs4,55. If rate 2
constants rather than absolute rates of reaction are desired, (33)
one seeks to evaluate the ratio betwéégnand the partition
function of the reactant sid€),. A Monte Carlo approach to Consequently, the functiaf,(B%,B%) is not only symmetric
the computation of such ratios has been recently presented with respect to time inversion, as follows directly from Eq.
Ref. [56]. (30), but also with respect to the exchange of variat38s

[7(82 82) + 7(8%,BY)] = (B BY).
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and BY. Let us Write}'{(Bf,B(j’) as the sum between its To summarize, by Monte Carlo simulations, one may

symmetric and its antisymmetric parts, compute averages of the type
Ge(it) ,
/ 4 Y 1 , ’ , ’ F F BO BO
e = res e R(ee) - REE)] T = e
;- 1, P 0 1, o 0’ 0 »0’
Since antisymmetric functions integrate to zero against a _EE’e e P «(B,,B,)
symmetric probability measure, and since the products of B (B2 )7V B0 dust iV crrgB Yo
symmetric and antisymmetric functions are antisymmetric,
we have (34)
where

(7182807 = (8280 + ([ e%8)

FB,BY) = ———{ 0,89, BY e #2I
e A |

_ _ + FO(BO. BO') (BB +AB] )]

The last equation and the equality FUBLLBL e } (39

The estimating functiod,(B®, B0 ) is symmetric under time
inversion—that is 5B, B ) = 7_(B?, B )—as well as un-
der the exchange of the variablB& andBY .

which was discussed in the previous paragraph, clearly dem- The construction of estimators for derivatives in origin is
onstrate that the estimator given by E81) has a variance straightforward and follows from Eq34). By Monte Carlo

Ge(it)

(71(82,8%)) = (7 (B2,BY)) = i

smaller than that of the estimator given by E27). simulations, one may compute the following averages:
|
B V0B Byt I 0 R0’
o R e H2LToVsroBdurloVosto )0l 7 (B2, BY ) eo
— Gp(it = - . 36
N dt® F(it =0 R e (BRLQVis+oB dus [V (xstoB] dul (36)

In this respect, the reader should notice that the function
F(B%,BY) is well-defined for allte (-#/2,54/2) and is

infinitely differentiable on this interval provided that the po-
tential V(x) is also differentiable infinitely many times. In
practical applications, the time derivatives appearing in Eq. 2moy
(36) are to be computed by finite difference. We shall further

discuss this matter in Sec. IV.

We now describe the construction of estimators for theyhere o,,= g0/, are clearly simpler to express in the
case of ad-dimensional system. For definiteness, we shallhew coordinate system. Moreover, transformations of the
assume that the physical coordinates have been rescaled siyghe shown by Eq(37) are consistent with the aforemen-
that all masses are equal to the common vafyePerhaps  tioned advice of Predescu and Doll that the time dependence
after a reorientation of the system of axes so that the firsgf paths should be buried into the potential part of the
coordinatex; is along the reaction coordinate, the reactantsreynman-Kac formula whenever possible.
and products are assumed to be separated in the configura-with these clarifications, we leave it for the reader to
tion spaceR? by a hyperplane of equatior,=xs. For the  demonstrate that the multidimensional analogues of the vari-
remainder of this section, when dealing with expressions ineus quantities necessary for the construction of derivative
volving the density matrix, it turns out that it is more conve- estimators are as follows. With the understanding that the
nient to work with the pair of position coordinaté¢s, z), guantitiesV’(x) andV”(x) now denote the first-order and the
with z=x"-X, rather than with the standa(d, x’) pair. This  second-order partial derivatives against the reaction coordi-
is so because identities of the type natex,, the multidimensional analogue of E@5) is

f dX’ pip(X,X"; B prp(X, X" B (X" = X)
R

f dze%f(zoyy), (37
R
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1 1
}‘?(x,z,Bf,B?') 20_12”) 2<Tto ﬁ{f V’(x+¢r+tzu+at )uduHJO V’(x+<r+tzu+at )(1 u)du}

0

1 1
+ Bftlj V' (X + 0yqzU + a_tBﬂ)udu] {f V' (X + oyzu+ o BY)(1 - u)du}
0

0

1 1
- B_tﬂtlf (x + 0,ZU+ o}B )udu] {f V' (X + oyzu+ o_BY)(1 - u)du}

1 1
- B_tﬁtlf V' (X + ogZU + o_tBS)udu] {f vV’ (x + 02U+ 0B )(1 u)du}
0

0

- B J V(X + opzu+ o_B)u(1 - u)du- ,Bf v/ x+(r+tzu+atB ) (1 -u)du. (39)

The quantitiesB? and BY are independent-dimensional Xe‘(ﬁlz)[A—l(xvaBg)*‘At(vang,)]}_ (40)
standard Brownian bridg€s-dimensional vector valued sto- o o
chastic processes, the components of which are independehie normalization coefficient/r now reads

one-dimensional standard Brownian bridgé¥e also define 1 1 \¢1 ,
e
8mmy\ 27ay S

@ (BIDLIEV(x+ogzu+agBY du+[3V(x+opzuragB] )du] (41)

1
A(x,z,BY) = f V(X + ggzu + aoBg)du
0

where the integration against the variablemndz is done on
the (d-2)-dimensional hyperplang, which is the subset of
the spaceR? x RY defined by the equations =xs andz; =0
Therefore, the symbalx stands for the Lebesgue measure
as well as dx, - -dxg, Whereasdz stands fordz: --dz. The Euclidian
norm ||z|=(Z+---+Z)¥? can be replaced byiz||=(Z+--

_ 2B

1
f V(x + oyzu+ oBYdu (39
B Jo

]—‘(x 2,80 8% ) {J,Eo (x 2,80 8% ) +z§)1’2 since the coordinatg, is kept constant and equal to
MR 2Bl e zero during integration.
, In these conditions, up to the value of the normalization
x @ (BIIA(x,2BY+A_(x,2B) )] coefficient Vg, the derivatives in origin of the flux autocor-
) relation functions can be determined by Monte Carlo integra-
+f?(x,z, BY B® ) tion, as implied by the equation
|
2 dk ’
) dxdzEE e HzH ,8/2)[fov(x+aozu+aoB )du+fov(x+aozu+aoB )du]a}-t (X 7 BO BO ) =0
D 1 d
= G| = (42)
NF NF dt t=0 2
dxdzEE e HzH ,8/2)[fov(x+aozu+aoB )du+fov(x+<rozu+aoB )du]
s
|
IV. SOLVING THE INVERSE MOMENT PROBLEM: At this point, it is natural to address the problem of recover-

A NUMERICAL EXAMPLE ing the correlation functions from the sequence of computed
Until now, we have demonstrated that the sequence ofloments.
derivatives at origin completely and uniquely characterizes More precisely, let us assume that we have computed the
the correlation function. Moreover, the sequence of derivaset of even and non-negative derivatiigg D, ...,D,, and
tives can be computed by Monte Carlo simulation via estithat we have calculated the momepig =D, /D, for 1<k
mators that have finite variance in the limit of an infinite <n. At the very least, we would like to construct a sequence
number of path variable@®f course, for analytic potentigls  of symmetric probability distributiondPg (w) such that
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n
Mk:f w*dPg (@) (43 Dzﬁf m(w)w2kexp(—2)\jwzj>dw, o<ks=n.
R R j=0

for all 1=sk=n andn=1. Indeed, if Eq.(43) is satisfied, (48)
then so is the hypothesis of Theorem 3, a theorem that fulNotice that the form of the approximant given by E47)
ther guarantees that the correlation functions are fully recovensures both the positivity and the symmetry of the power

ered (pointwisg in the limit n—cc. However, many times, spectrum, properties that have been demonstrated in Sec. Il.
the pointwise reconstruction of the correlation functions doesthen, the entropy 06 () is given by

not suffice. For example, in the case of the flux autocorrela-
tion function, the chemical physicists are usually interested — — "
in computing the absolute rate of reaction, which is the time SGonl = ‘f Gon(@)IN[Go p(w)/M(w) Jdo = 2 AiDy;.
integral of the correlation function : 1=0
(49

K(T)Q,(T) = f Ge(t)dt. (44) _ One of the advantages of the ma_ximum entropy algorithr_n
0 is that, by use of default models, it may incorporate addi-
tional physical information that depends upon the nature of
Because the first even moments do not uniquely determine the quantum results being sought. However, for the present
a symmetric probability distribution, we have freedom in example, a flat default model has been utilized. Also, for the
choosing the reconstruction algorithm in such a way that nopresent application, the data have been assumed noiseless.
only the pointwise values of the correlation functions, butThe stability of the final results with respect to the errors in
also various integral expressions are recovered in the limithe input data has been found to be excellent, in part because
n—s oo, the number of matched moments is small, but also because
Although the optimal reconstruction algorithm dependsthe different data are perfectly correlatgtey are obtained
upon the nature of the correlation functions and of the quanin the same Monte Carlo ranThus, the assumption of noise-
tum information being sought, we shall discuss and utilize infess data is good. For larger numbers of included moments,
the present paper a choice that is based on the maximumore general approaches of Bayesian statistical inference
entropy approach. The maximum entropy methodwith entropic priors also allow for the treatment of noise in
[15,40,57-5Psuggests that a useful criterion is to choose thethe data, via likelihood functionfl5].
probability distributionG(w) that maximizes the Shanon en- ~ The system of equatiorn@8) can be replaced by

tropy 1 n 2j
No=1In —f m(w)e =N dw (50)
DoJx

— — _ 0
SG)=- J G(w)In[G(w)/m(w)]dw, (45)
R and

relative to the default modeh(w) and subject to the con- f m(w) 0¥ =17 de
R

straints
Dk =Dg

, 1<k=n. (5)

_ f m(w)e_EJn:lAJ“’Zjdw
J G(w)w*dw=Dy, O0<k=n. (46) R
R

It is then a simple exercise to verify that E@S1) are satis-

In information theory, such a probability distribution is the fied for all 1=k<n provided that the\;'s represent the co-
least biased one that is compatible with the partial informa®rdinates of the minimum of the entropy functional
tion represented by the known first moments. The default 1 _
modelm(w) is a strictly positive distribution. Although ithas G, ,,]=Dgln {—f m(w)e—i?:lk,-wzjdw} S A,Ds;,
a definite probabilistic meaning only if it is integrable, non- ' DoJr j=1
integrable default models can also be used. The choice (52)
m(w) =1 is called the flat default model.

Simple variational arguments and use of Lagrange multiwhich is a convex function ok, ..., \,. Due to the convex-

pliers show that the unique maximum of the above problenity of the function that is minimized, the minimum of Eq.
is realized for (52), if it exists, is unique. The necessary and sufficient con-

ditions for the existence of the minimum are known in the
n literature[57,6Q. In the present article, the minimization of
ao,n(w)=m(w)exp<—2 7\jw2j>. (47) Eq. (52) has been carried out with the help of Newton’s
j=0 steepest descent technique. The Hessian matrix is evaluated
explicitly and utilized to predict the direction along which to
The coefficientsky, ..., \,, are the Lagrange multipliers and line-minimize. The Golden Section search is utilized to op-
can be determined from the equations timize along the computed direction. As discussed in Ref.

n

066705-10



RECONSTRUCTION OF THERMALLY SYMMETRIZED... PHYSICAL REVIEW E 70, 066705(2004)

TABLE I. Numerical values for the coefficientg; appearing in the finite-difference approximations of
the derivatives of orderk2

2k Ck,0 Ci.1 Cy,2 Cy3 Cy4 Cys

0 1 0 0 0 0 0

2 -5269/1800 10/3 -10/21 5/63 -5/504 1/1575

4 1529/120 -1669/90 4369/630 -541/420 1261/7560 -41/3780
6 -1023/20 323/4 -39 87/8 -19/12 13/120

8 154 —252 136 —46 26/3 -2/3

10 —252 420 —240 90 —-20 2

[60], the computation of the coefficients becomes less and Regarding the computation of derivatives by finite differ-
less stable as the number of matched moments increases amtice, the range of values ethat can be utilized depends on
depending upon the number of even derivatives considereghe order of the derivatives as well as on the numerical pre-
may require extended-precision arithmetics. cision with which the computations are conducted. For the
In order to demonstrate its usefulness, we apply the mopresent paper, we employ the IEEE floating-point data type
ment technique to the problem of computing the quantunyouble (64 bit) for the representation of real numbers. In-

rate of reaction for a symmetric Eckart barrier at variouscreasing the order of the derivatives beyond 10 requires use
temperatures. The parameters for the Eckart barrier are ch@f extended-precision data typga2].

sen to correspond approximately to the Hzttdaction[61]. Many times, the chemical physicist takes the different ap-
The potential is proach of constructing mode{and, therefore, empirical in-
V(x) = V, sectiax)? (53) version techniqugghat have already incorporated additional

physical input[63]. In such cases, the finite number of de-
with the parametersv/,=0.425 eV, a=1.36 a.u., andm, rivatives that can be computed using the data tgpable
=1060 a.u. may suffice for many practical purposes. This is why it is
We evaluate the flux autocorrelation function and its firstappropriate to table the coefficierdg,, for the reader’s con-
five even derivatives at origin by Monte Carlo simulations,venience. General rules for computing derivatives of arbi-
as described in Sec. Ill. The derivatives of the estimatotrary orders and accuracy have been discussed elsewhere

F(B%,BY) appearing in Eq(36) are replaced by numerical [64]. According to Eq.(54), the accuracy of the finite-
approximations computed via the central difference. Remenfifference scheme is largest for the small-order derivatives
bering thatFt(BE,BS/) is symmetric under the transformation and decreases for the larger-order derivatives, if all 'Ehe infor-
t>—t, the finite-difference formulas take on the generalMation contained in the six points at whicR(BY,BY) is
form evaluated is to be taken into consideration. This is to our
advantage, because the low-order derivatives are computed
dx 0 mo' 12 0 a0’ _— with increased precision despite the relatively large value of
F(Ft(B*'B* )= ﬁz_: Gk 7j+(B1BY) + O(727%), the discretization step demanded by the higher-order de-
j=0 -
rivatives.
(54) For the sake of example, in Table I, we present the Monte
Carlo estimates of the first five even derivatives at origin for
the Eckart barrier at a temperature of 100 K. The derivatives
have been evaluated in 10 million Monte Carlo points with
148 the help of the estimators introduced in Sec. lll. For the
T= 64 2 (55) discretization of the Feynman-Kac formula, we employ Pre-
descu’s fourth-order path-integral technidéé] with a num-
is sufficient for a determination of the derivatives to an ac-ber of 64-path variables. This technique is basically a Trotter
curacy of less than 2%. product

where the coefficients; are given in Table I. Numerical
experiments demonstrate that a time step of

TABLE II. Derivatives (second row and relative errorgthird row) for the symmetric Eckart barrier at
100 K. The errors are twice the percentile relative value of the standard deviation. The errors do not include
the systematic errors due to the utilization of finite-difference approximations, which have been estimated to
increase the final errors with less than 2%. Numbers in brackets denote powers of 10.

Order 0 2 4 6 8 10

Value  5.787E-17] 2.389E-22]  4.01GE-27] 1.39E-31]  7.989E-36]  6.78]E-4(]
Error 2.5% 2.4 % 2.4% 2.7% 3.9% 6.1%
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TABLE lll. Percentile relative errors for the absolute rates of reaction computed using all derivatives up
to the maximum orders of 2, 6, and 10 respectively. The errors are given as functions of temperature.
Whenever the minimization algorithm did not converge properly while using the maximal number of deriva-
tives, a smaller number of derivatives was utilized. The relative errors for the high-temperature limit are those
for the free-particle cas@vhich are independent of temperature

Order of Temperature

derivatives 100 K 200 K 300 K 500 K 1000 K 2000 K 0

2 —-13.8 —-2.3 8.4 -2.1 —-18.3 —25.7 —27.6
6 —-4.9 -0.8 2.5 1.8 —7.7 —-15.0 —-17.1
10 —-2.9 0.3 0.0 1.3 —-54 -11.9 —13.4
PnX 5 B) = | dxgr e [ dxypol XX —— KMQ(T) =] Gept)dt=-| Ggp(t)dt=7Gg,(0).
R R n+1 0 2)
B ) (58)
X+ pol X, X 1 —— (56)
po< " n+1 Let us remember that

. . Gep(t) — Ge(t), OteR
of a short-time approximation of the type
for all reconstruction algorithms that satisfy the hypothesis

of Theorem 3. However, as already mentioned several times,
this does not automatically imply pointwise convergence in
the frequency domain. Sure enough, convergence in the fre-
quency domain is necessary only for the purpose of comput-
ing the absolute rate of reaction as the time integral of the
flux autocorrelation function, the power spectrum of which is
continuous at origin. It is not required for other autocorrela-
(57) tion functions. Because it depends on the physical signifi-
cance of the corresponding autocorrelation functions and on
the nature of the quantum information that is sought, the
development of optimal reconstruction algorithms is a case-
by-case problem.

It is beyond the scope of this paper to conduct any math-
ematical proofs related to the pointwise convergence of the
power spectrum of the flux autocorrelation functions. How-
ever, the percentile relative errors for the absolute rates of
is as fast a©(1/n%. These parameters are universal, in thereaction presented in Table Il strongly suggest that the maxi-
sense that they are independent of the choice of potentighum entropy algorithm discussed in previous paragraphs is
V(x), and are given in Refl65], a reference that should be viable for the purpose of computing rates of reaction. The
consulted for further information. errors eventually increase as the temperature is lowered, but

At this low temperature of 100 K, the Monte Carlo sam- the reader may notice that the relative errors are sufficiently
pling requires the use of parallel temperif&s,67, which,  small to make the algorithm useful even in the tunneling
however, successfully copes with the sparse sampling prolsegime of temperatured <300 K).
lem caused by the crossing and recrossing of the barrier by At large temperatures, the relative errors converge to the
the Brownian paths. As a matter of fact, by Monte Carlorelative errors for a free particle. The thermally symmetrized
integration, we compute the rati@®s, /g and the associated flux autocorrelation function for the free particle[&2,39
statistical errorgtwo standard deviationsThe quantity/ Vg

ol 8= | e dtag
R R

n q
xXexpy - BEq WiV[Xr(Ui) + o2 ()
i=1

k=1

The quadrature pointg and weightsy; as well as the func-
tions Ay (u) are designed such that the convergence

pr(X.X"; B) — p(x.X"; B)

2
is evaluated with the help of the numerical matrix multipli- Ge(t) = iﬂ (59)
cation technique54,55, which provides essentially exact Bh[t? + (Bhl2)?]¥?
results. Thus, the relative errors reported in Table Il are equ
to the relative errors of the ratid3, /Ny and are, therefore, 6}{5 power spectrum reads
representative of the variances of the estimating functions _ _ 1 whp whf
utilized in the Monte Carlo simulation. Gr(w) = Bh 2m K\ =5 ) (60)

Once the power spectru@e ,(w) is determined, the ab-
solute rate of reaction can be computed from @d), as the  whereK;(x) denotes the respective modified Bessel function
quantity of the second kind. The functiorK;(x) is continuous at
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origin, indeed, but its even derivatives in origin are not de-of data that is more suitable for the problem of extracting
fined. Therefore, the functiorK,(x) is not readily approxi- quantum dynamical information than the mere Monte Carlo
mated around origin by smooth functions of the type givenevaluation of the imaginary-time autocorrelation function on
by Eq.(47). Thus, for example, a useful direction for future & grid. However, future research is necessary in order to
research is to modify the default model in the maximumquantify in a precise manner the efficiency of the new algo-

entropy algorithm in order to properly account for the known rithm. In particular, the scaling of the variances of the Monte
high-temperature limit. Carlo estimators with the degree of the derivatives, the di-

mensionality of the physical system, and the temperature
must be determined.
The numerical results presented in Sec. IV demonstrate
A new technique for extracting quantum dynamical infor-that the derivatives at origin of autocorrelation functions
mation from imaginary-time data has been proposed. Theontain useful information that can be utilized in at least two
technique consists in solving a symmetric Hamburger moways. First, one may employ this information together with
ment problem with even-order moments related to the evenvarious inversion algorithms for the Hamburger moment
order derivatives at origin of the quantum autocorrelationproblem. In this respect, | believe that methods of Bayesian
function. It has been demonstrated that the derivatives atatistical inference and maximum entropy will be most use-
origin uniquely determine the autocorrelation function. Theful, especially because such techniques can incorporate addi-
derivatives can be computed by Monte Carlo simulationdional physical informatior{as, for instance, a certain limit-
with the help of estimators of finite variance. The pointwiseing behavioy by appropriate choices of default models.
reconstruction of the autocorrelation functions can be perSecond, if only a small number of derivatives are computed,
formed by those inversion algorithms that satisfy the hypoththe chemical physicist also has the option of developing cer-
esis of Theorem 3, although additional care is needed if othetain physical models depending on parameters that can be
guantities, such as, for instance, certain integral values, aetermined from matching the known derivatives. Which of
also sought. A moment-based maximum entropy inversiothese two ways will be the most successful for practical ap-
algorithm has been numerically shown to cope successfullplications remains to be seen.
with the problem of computing absolute rates of reaction for
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Perhaps the most important step in the present develop- The author acknowledges support from National Science
ment is the realization that the derivatives at origin of theFoundation through Grant No. CHE-0096576. He wishes to
imaginary-time autocorrelation functions are computableexpress a special thanks to Professor William H. Miller for
solely by Monte Carlo simulations. As argued in the Intro-suggestions and stimulating discussions concerning the
duction, the sequence of derivatives at origin represents a sptesent development.

V. SUMMARY AND DISCUSSION

[1] R. P. Feynman, Rev. Mod. Phy&0, 367 (1948). (1983.

[2] A. M. Amini and M. F. Herman, J. Chem. Phy®9, 5087 [18] E. Gallicchio and B. J. Berne, J. Chem. Phys01, 9909
(1993. (1994).

[3] B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Cheff, [19] D. Kim, J. D. Doll, and J. E. Gubernatis, J. Chem. Ph¥86,
401 (1986. 1641(199%.

[4] R. H. Cameron, J. Math. Phy89, 126 (1960. [20] D. Kim, J. D. Doll, and D. L. Freeman, J. Chem. Phy€8

[5] J. D. Doll, J. Chem. Phys81, 3536(1984). 3871(19998.

[6] V. S. Filinov, Nucl. Phys. B271, 717 (1986 [21] G. Krilov, E. Sim, and B. J. Berne, J. Chem. Phyd4, 1075

[7]1 N. Makri and W. H. Miller, Chem. Phys. Lettl39 10 (1987). (200D.

[8] J. D. Doll, T. L. Beck, and D. L. Freeman, J. Chem. Phg8, [22] W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys.
5753(1988. 79, 4889(1983.

[9] C. H. Mak, Phys. Rev. Lett68, 899 (1992. [23] E. Rabani, G. Krilov, and B. J. Berne, J. Chem. Phg%2,

[10] G. Baym and D. Mermin, J. Math. Phy&, 232(1961). 2605(2000.

[11] E. Nelson, J. Math. Physs, 332 (1964). [24] E. Sim, G. Krilov, and B. J. Berne, J. Phys. Chem.1Q5

[12] H.-B. Schuttler and D. J. Scalapino, Phys. Rev. L&f, 1204 2824(2001).
(1985. [25] E. Rabani, D. R. Reichman, G. Krilov, and B. J. Berne, Proc.

[13] S. R. White, D. J. Scalapino, R. L. Sugar, and N. E. Bickers, Natl. Acad. Sci. U.S.A.99, 1129(2002.
Phys. Rev. Lett.63, 1523(1989. [26] S. R. White, Phys. Rev. Bl4, 4670(1991).

[14] M. Jarrell and O. Biham, Phys. Rev. Le®3, 2504(1989. [27] S. R. White, Phys. Rev. Bl6, 5678(1992.

[15] M. Jarrell and J. E. Gubernatis, Phys. R&69 133(1996. [28] M. Caffarel and D. M. Ceperley, J. Chem. Phy37, 8415
[16] J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia, Phys. (1992.

Rev. B 44, 6011(199)). [29] J. Deisz, K.-H. Luk, M. Jarrell, and D. L. Cox, Phys. Rev. B
[17] D. Thirumalai and B. J. Berne, J. Chem. Phy&9, 5029 46, 3410(1992.

066705-13



CRISTIAN PREDESCU

[30] J. Deisz, M. Jarrell, and D. L. Cox, Phys. Rev.48, 10 227
(1993.

[31] J. Skilling, inMaximum Entropy and Bayesian Methpddited
by J. Skilling (Kluwer, Dordrecht, 198p p. 455.

[32] R. N. Silver and H. Réder, Int. J. Mod. Phys.%;735(1994).

[33] D. A. Drabold and O. F. Sankey, Phys. Rev. LetD, 3631
(1993.

[34] L. W. Wang, Phys. Rev. B49, 10 154(1994).

[35] R. N. Silver, H. Réder, A. F. Voter, and J. D. Kress, J. Compult.

Phys. 124, 115(1996.
[36] R. N. Silver and H. Rdder, Phys. Rev. 5, 4822(1997.
[37] W. H. Miller, J. Chem. Phys61, 1823(1974.
[38] W. H. Miller, J. Phys. Chem. A102, 793(1998).
[

39] G. A. Athanassoulis and P. N. Gavriliadis, Probab. Eng. Mech.

17, 273(2002.
[40] E. T. Jaynes, Phys. Rei06 620 (1957.
[41] A. Tagliani, J. Math. Phys35, 5087(1994).
[42] C. Predescu and J. D. Doll, J. Chem. Phg47, 7448(2002.

PHYSICAL REVIEW EO, 066705(2004)

[51] M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys.

76, 5150(1982.
[52] R. Paley, N. Wiener, and A. Zygmund, Math. A7, 647
(1933.

[53] C. Predescu, D. Sabo, J. D. Doll, and D. L. Freeman, J. Chem.

Phys. 119, 10 475(2003.
[54] A. D. Klemm and R. G. Storer, Aust. J. Phy86, 43 (1973.

[55] D. Thirumalai, E. J. Bruskin, and B. J. Berne, J. Chem. Phys.

79, 5063(1983.

[56] T. Yamamoto and W. H. Miller, J. Chem. Phy420, 3086
(2004).

[57] E. T. Jaynes, imThe Maximum Entropy Formalisnedited by
R. D. Levine and M. TribugMIT Press, Cambridge, 1978
pp. 15-118.

[58] J. Skilling, inMaximum Entropy and Bayesian Methaetdited
by J. Skilling (Kluwer, Dordrecht, 1989 p. 45.

[59] S. F. Gull, inMaximum Entropy and Bayesian MethadRef.
[58]), p. 53.

[43] C. Predescu, D. Sabo, J. D. Doll, and D. L. Freeman, J. Chen{60] A. Tagliani, J. Comput. Appl. Math90, 157 (1998.

Phys. 119 12 119(2003.
[44] J. N. Lyness, Math. Compu®2, 352 (1968).

[61] W. H. Miller, Y. Zhao, M. Ceotto, and S. Yang, J. Chem. Phys.

119, 1329(2003.

[45] J. D. Doll, M. Eleftheriou, S. A. Corcelli, and David L. Free- [62] Y. Hida, X. S. Li, and D. H. Bailey, irProceedings of the 15th

man, Quantum Monte Carlo Methods in Physics and Chemis-
try, edited by M. P. Nightingale and C. J. Umrigar, Vol. X of

IEEE Symposium on Computer ArithmetiEEE Computer
Society, Englewood Cliffs, NJ, 2001pp. 155-162.

NATO Advanced Study Institute Series, Series C: Mathemati-[63] N. F. Hansen and H. C. Andersen, J. Chem. PH&l, 6032

cal and Physical SciencéKluwer, Dordrecht, 1999

[46] B. J. Berne and G. D. Harp, Adv. Chem. Phyl¥/, 63 (1970.

[47] H. Hamburger, Math. Ann81, 235 (1920; 82, 120 (1921);
82, 168(1921).

[48] R. Durrett,Probability: Theory and Exampleg2nd ed.(Dux-
bury, New York, 1996

[49] B. Simon,Functional Integration and Quantum Physi@sca-
demic, London, 1970

[50] J. Barker, J. Chem. Phy§.0, 2914(1979.

(1994).

[64] I. R. Khan and R. Ohba, J. Comput. Appl. Math07, 179
(1999.

[65] C. Predescu, Phys. Rev. €9, 056701(2004).

[66] C. J. Geyer, irComputing Science and Statistics: Proceedings

of the 23rd Symposium on the Interfacedited by E. M.
KeramigagInterface Foundation, Fairfax, 199bp. 156—163.

[67] K. Hukushima and K. Nemoto, J. Phys. Soc. Ji&%, 1604
(1996.

066705-14



